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1 Premises

The discussion that follows stems from the work of Seiberg and Witten
exposed in the two seminal papers [1] and [2]. Here I will follow mostly the
description given in the lecture notes by Bertolini [3] and those by Bilal ([4]
and most of all [5]). An additional read can be found at [6]. There are also
two video lectures by Witten himself on the topic [7, 8].

I will try and introduce as little knowledge of Supersymmetry as possible
in the following. However, some general and some more specific concepts
are obligatory and I will introduce them when needed. For starters, let me
immediately give away the punchline of the whole discussion:

the presence of monopoles and dyons in the spetrum allows the
determination of the exact non-perturbative low-energy effective
Lagrangian of the N = 2 supersymmetric Yang-Mills theory with

gauge group SU(2).

∗emanuele.gendy@desy.de
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This theory is the supersymmetric generalization of the usual Yang-Mills
one, and it contains, on top of the gauge bosons, two Weyl fermions and a
complex scalar.

2 Supersymmetry basics

As it is known, supersymmetry is a symmetry that relates fermionic and
bosonic degrees of freedom. It can be generated by postulating that, in
addition to the Poincaré generators of spacetime translations Pµ and ro-
tations Mµν , and possibly internal symmetry generators, there exist a set
of additional anticommuting fermionic generators QIα, Q̄Iα̇ transforming in
the

(
1
2 , 0
)

and the
(
0, 1

2

)
representation of the Lorentz group, respectively1.

Here α and α̇ are Dirac indices and I, J = 1, . . . ,N indicate how many
of these new generators we add. From here on, we will restrict to N = 2,
which is the case we are interested in. Then, one must add to the Poincaré
algebra the following (anti-)commutation relations2:[

Pµ, Q
I
α

]
=
[
Pµ, Q̄

I
α̇

]
= 0 (1)[

Mµν , Q
I
α

]
= i (σµν) β

α QIβ (2)[
Mµν , Q̄

Iα̇
]

= i (σ̄µν)α̇
β̇
Q̄Iβ̇ (3){

QIα, Q̄
J
β̇

}
= 2σµ

αβ̇
Pµδ

IJ (4){
Q1
α, Q

2
β

}
= 2
√

2εαβZ (5){
Q̄1
α̇, Q̄

2
β̇

}
= 2
√

2εα̇β̇Z
∗ . (6)

The ones we care about the most, here, are the last three. In particular,
taking a state with mass m in its rest frame, Pµ = (m, 0, 0, 0), Eq. (4)
becomes {

QIα, Q̄
J
β̇

}
= 2mδαβ̇δ

IJ . (7)

Then one can define

aα =
1√
2

(
Q1
α + εαβ(Q2

β)†
)

(8)

bα =
1√
2

(
Q1
α − εαβ(Q2

β)†
)
, (9)

1This is the only way to elude the Coleman-Mandula theorem [9] stating that, under
very generic assumption, (locality, causality, positivity of energy, finiteness of number of
particles, etc...), the only possible symmetries of the S-matrix are, besides C, P, and T ,
the Poincaré group in direct product with internal symmetries. See also [10].

2here σµ =
(
σ0, σi

)
, σ̄µ =

(
σ0,−σi

)
, where σ0

αβ̇
= δαβ̇ and σi are the Pauli matrices,

and (σµν) β
α = 1

4

(
σµαγ̇ (σν)γ̇β − (µ↔ ν)

)
, (σ̄µν)α̇β̇ = 1

4

(
(σ̄µ)α̇γ σν

γβ̇
− (µ↔ ν)

)
are (−i

times) the infinitesimal generators of Lorentz rotations on the left- and right-handed Weyl
spinor representations, respectively.
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satisfying the oscillator algebra{
aα, a

†
β

}
= 2(m+

√
2|Z|)δαβ (10){

bα, b
†
β

}
= 2(m−

√
2|Z|)δαβ , (11)

with the other combinations vanishing. Eq. 11 implies3

m ≥
√

2|Z| . (13)

The states we are interested in are those for which the bound is saturated,
i.e. m =

√
2|Z|. These are called BPS states4. In this case, the b generators

are trivially realized, and we are only left with aα and a†α. The action of a†

is to raise the spin by 1/2 while a lowers it by the same quantity. Then, we
can define a so called Clifford vacuum |m, s〉 as the state with mass m and
spin s that is annihilated by aα, α = 1, 2. Because of the anticommutation
relation between two a† vanishes, we can act with either of them only once.
Then, if we start with a spin 0 Clifford vacuum, we can produce the following
multiplet: (

0,
1

2
,
1

2
, 1

)
. (14)

Actually, CPT requires that we add by hand the multiplet obtained starting
with a spin −1 state, so that the actual result is(

0,
1

2
,
1

2
, 1

)
⊕
CPT

(
−1,−1

2
,−1

2
, 0

)
. (15)

In the massless case, the creation-annihilation operators are defined in a
slightly different way, but following similar steps one can show that half of
them is trivially realized and, starting from a Clifford vacuum with helicity
0, we obtain the same multiplet as in Eq. (15). Obviously, there are a lot of
other possibilities other than Eq. (15). For example, another multiplet we
will encounter is the so called hypermultiplet, obtained by starting with a
spin −1

2 state, and corresponding to(
−1

2
, 0, 0,+

1

2

)
⊕
CPT

(
−1

2
, 0, 0,+

1

2

)
. (16)

As we can see, the hypermultiplet contains two Weyl fermions and two
complex scalars.

3This can be seen as follows: taking the expectation value of the 11 or 22 component
of (11) (the only non vanishing ones) on a state |ψ〉, we obtain

〈ψ|bαb†α + b†αbα|ψ〉 = 〈ψ|bαb†α|ψ〉+ 〈ψ|b†αbα|ψ〉 = ‖b†α |ψ〉‖2 + ‖bα |ψ〉‖2 ≥ 0 . (12)

4named after Bogomol’nyi–Prasad–Sommerfield, also see Jeremy’s talk.
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3 N = 2 SU(2) SuperYM Lagrangian

The generalization of the SU(2) Yang-Mills Lagrangian to N = 2 SUSY
takes the following form:

L =
1

g2
Tr

[
−1

4
FµνF

µν +
θ

32π2
g2FµνF̃

µν +DµφD
µφ− 1

2

[
φ, φ̄

]2
+

−iλσµDµλ̄− iψσµDµψ̄ + i
√

2
[
φ̄, ψ

]
λ+ i

√
2
[
φ, λ̄

]
ψ̄
]
. (17)

The main features of this Lagrangian can be summarized as follows:

• As advertised, it contains a gauge field Aµ = AaµT
a, where T a are

the SU(2) generators, a complex scalar φa, and two Weyl fermions
λa and ψa. As supersymmetry commutes with internal symmetries,
and all of the fields belong to the same SUSY multiplet, they have to
belong to the same representation of the gauge group, too. That is
why the scalar field as well as the two fermions belong to the adjoint
representation, justifying the trace that must be taken for all terms of
the Lagrangian.

• Moreover, as SUSY exchanges the different field within themselves, in
order to respect it the Lagrangian must be expressed in terms of only
two couplings, the gauge coupling g and the anomalous coefficient θ. In
the SUSY literature, these two are usually packed in a single complex
coefficient τ , defined as:

τ =
θ

2π
+

4πi

g2
. (18)

• In addition, this theory enjoys a U(1) global symmetry, theR-symmetry,
that is the abelian part of the U(2) symmetry that rotates the two
SUSY generators Q1,2. The charge assignments can be deduced from
the Yukawa potentials, and can be normalized so that R(λ, ψ) = 1
and R(φ) = 2. Because it couples to Weyl fermions, this symmetry is
anomalous, and it is broken to Z8.

• Lastly, the β-function of the gauge coupling turns out to be negative,
and the theory enjoys asymptotic freedom.

Now, as showed in the lecture by Jeremy, an SU(2) gauge theory with a
charged scalar φ with scalar potential

V =
λ

4

(
Trφ2 − a2

)2
, (19)

undergoes a Higgs mechanism that breaks SU(2) → U(1) and admits soli-
tons solutions which carry monopole and/or dyonic charge under the resid-
ual U(1). This is the Georgi-Galshow model. The N = 2 SU(2) SYM in
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Eq. (17) has the same boson content as such a model, and its scalar po-

tential V ∝
[
φ, φ̄

]2
is minimized whenever φ is in the Cartan sublagebra of

SU(2), i.e. 〈φ〉 = aσ3 for any (complex) value of a. This vev breaks, too,
SU(2) → U(1), and our scope is the study of the effective theory describ-
ing the low energy modes after the breaking. In particular, we expect the
spectrum to contain monopole and dyon solutions. Using Noether’s theo-
rem, one can actually compute the electric and magnetic charges under the
unbroken U(1), which turn out to be:

q = − 1

ag

∫
dx3∂i

(
F 0i
a φ

a
)

= gne , p = − 1

ag

∫
dx3∂i

(
F̃ a0iφ̄a

)
=

4π

g
nm ,

(20)

where the second equalities for both equations are just the consequence of
Dirac’s quantization condition5:

qp = 4πn . (21)

The fundamental observation is that such charges can be related to the Z
charge. Indeed, as the Qα operators are the generators of supersymmetry,
they can, too, be computed as the spatial integral of the time component of
the conserved current of SUSY transformation, called supercurrent. Explic-
itly, one can then show that:

{
Q1
α, Q

2
β

}
=

2
√

2

g2
εαβ

∫
dx3∂i

[(
F a0i − iF̃ a0i

)
φ̄a

]
≡ 2
√

2εαβZ (22){
Q̄1
α̇, Q̄

2
β̇

}
=

2
√

2

g2
εα̇β̇

∫
dx3∂i

[(
−Fa0i + iF̃a0i

)
φ̄a

]
≡ 2
√

2εα̇β̇Z
∗ (23)

and finally

ReZ = ane ImZ = aτnm . (24)

Now, if Z 6= 0, the bound in Eq. (13) implies the presence of massive states
in the spectrum. Semiclassically, one can show that the soliton solutions in
the spectrum do satisfy the bound, meaning that they have a mass

m =
√

2|a(ne + τnm)| . (25)

Then, they need to satisfy it also in the full quantum theory. Indeed, in the
region where the semiclassic expansion is valid, these state are annihilated
by the b ladder operators. Being an algebraic condition, this property cannot
be spoiled by quantum correction, otherwise spurious additional degrees of

5the presence of a factor of 4π instead of the usual 2π is justified by the fact that the unit
charge here is actually g/2, which is the charge a field in the fundamental representation
of SU(2) would have under the unbroken U(1)
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freedom would appear in the spectrum. However, this does not mean that
the quantities within Eq. (25) do not individually undergo renormalization.
Including quantum corrections, indeed, we can generalize Eq. (25) to

m =
√

2|ane + aDnm| , (26)

which we can interpret as the definition of the quantities a and aD. In the
classical limit, the former is just the vev of the field φ, while the latter is
reduced to aD = τa.

4 Low energy theory

After the symmetry is broken we will have to deal with an effective theory.
However, the theory is still N = 2 supersymmetric, a feature that already
imposes strong constraints on what the Lagrangian can look like. Let us look
at which are the fields that can appear. As the theory is Higgsed, the only
surviving gauge boson is the one associated with the T 3 generator, resulting
in an abelian gauge theory. In a similar way, and as can be straightforwardly
deduced by the shape of the Lagrangian in Eq. (17), the non-zero 〈φ〉 gives
a mass to the components along T 1,2 of the fermions λ and ψ, while the
same components of the scalar φ are eaten by the gauge bosons. In the end,
we are left with the fields {A3

µ , φ
3 , ψ3 , λ3}. N = 2 SUSY requires that all

of the couplings can still be expressed in terms of a single complex number
τ(a), so that the Lagrangian is:

Leff = Im

[
τ(a)

(
1

2
FµνFµν + ∂µφ̄∂

µφ

)
+ fermionic contributions

]
, (27)

where6 Fµν = Fµν + i
2εµνρσF

ρσ and τ(a) = θ
2π + 4πi

g(a)2
. The fermionic pieces

play no role here and we will ignore them from now on. Knowing τ(a) for
all values of a would then amount to solve the theory completely, and this is
indeed what we are after. Actually, as we are dealing with an effective field
theory, one can show that the Lagrangian in (27) is but the expansion up to
second order in the fields of the whole expression. Still, N = 2 SUSY fixes
all the couplings so that they can be derived in terms of a single function
F(a), called prepotential, which is crucially holomorphic. In particular,

τ(a) ≡ ∂2F(a)

∂φ∂φ
. (28)

It is more convenient to parametrize the space of vacua, which is usually
referred to as the moduli space, through the coordinate:

u ≡ 1

2

〈
trφ2

〉
. (29)

6this is just a fancy way to rewrite LEM ∝ − 1
4g2

FµνF
µν + θ

32π2Fµν F̃
µν as can be

checked by expanding explicitly
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In the classical region, u ∼ a2, while in the full quantum moduli space this
relation will be modified

u = a2 + quantum correction . (30)

This coordinate is invariant under the Z2 symmetry φ → −φ which repre-
sents the action of the Weyl group of SU(2) and which is left unbroken. Now,
we are armed with all the tools to study the structure of the moduli manifold.
First, one can show that F(a) cannot be a holomorphic function for all val-
ues of a. Indeed, if it were, it would mean that Im τ(a) = Im ∂2F(a)

/
∂φ∂φ

is a harmonic function. As such, it could not be positive everywhere, unless
it were a constant (which we will show is not the case). So, there would be
regions of the moduli space where Im τ(a) would be negative, making the
effective gauge coupling g2 negative, too. This would imply the propagation
of negative norm states, which is unacceptable. The only way out lies in the
possibility that F(a) is defined only locally, i.e. there exist different local
description in different patches in the values of a. For example, we will have
some description in the classical region where u→∞, while a different one
is needed for small u. Because of asymptotic freedom, these regions corre-
spond to larger values of g, eventually infinite on some singularities. The
study of these singularities will guide us towards the structure of the whole
moduli space. To understand how different local descriptions can emerge,
we now have to introduce the notion of electric-magnetic duality in this
effective theory. Defining φD ≡ ∂F/∂φ we can rewrite Eq. (27) as

Leff =
1

2
Im [τ(a)FµνFµν ] +

1

2
∂µ

(
φD
φ

)†
J∂µ

(
φD
φ

)
where J =

(
0 i
−i 0

)
.

(31)

The scalar kinetic term is invariant under transformations that leave the
matrix J invariant, i.e.(

φD
φ

)
→M

(
φD
φ

)
where M †JM = J . (32)

This is just Sp(2,R), the continuous version of the duality group defined
above, and it is generated by

S =

(
0 −1
1 0

)
and Tb =

(
1 b
0 1

)
. (33)

Now we need to see how this group acts on the Maxwell term. First, let
us introduce a Lagrangian multiplier ADµ. We can now write the Maxwell
term as

S =

∫
dx4 Im

[
1

2
τ(a)

(
Fµν + iF̃µν

)2
]

+

∫
dx4ADµ∂νF

µν , (34)
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where the path integral is now done over AD and F . Indeed, integrat-
ing over AD imposes ∂νF

µν , which requires Fµν = ∂µAν − ∂νAµ and
brings us again to the usual Maxwell term with path integral over Aµ.
However, we can first integrate over F instead. By integration by parts,
the second term in Eq. (34) becomes FDµνF

µν , where FDµν ≡ ∂µADν −
∂νADµ is the field strength corresponding to ADµ. Adding and subtracting

Im

[
1

2τ(a)

(
FDµν + iF̃Dµν

)2
]

we can complete the square

S =

∫
dx4 Im

[
1

2
τ(a)

{(
Fµν + iF̃µν

)
+

1

τ(a)

(
FDµν + iF̃Dµν

)2
}2

+

− 1

2τ(a)

(
FDµν + iF̃Dµν

)2
]
. (35)

Finally we can perform the path integral over F to get

S =

∫
dx4 Im

[
− 1

2τ(a)

(
FDµν + iF̃Dµν

)2
]
. (36)

So the action of S, which amounts to the exchange Aµ ↔ ADµ, acts on the
coupling τ(a) as τ(a) → τD = − 1

τ(a) . This suggests which are the patches
that we should use to describe the theory: when u is large, we can exploit
asymptotic freedom and safely take the classical approximation, where the
theory is described by the fields Aµ and φ and the vev a is a good coordinate,
while for small values of u we can get a perturbative description in terms
of the fields ADµ and φD and the vev aD. Tb does not act on the fields but
on the coupling only, by shifting the θ angle by 2πb. In order for it to be a
symmetry, we need b ∈ Z, so the group reduces to SL(2,Z), and we define for
later T ≡ T1. Let us make a final remark. Imagine we add a hypermultiplet
with electric charge ne to this theory. Recall that a hypermultiplet contains
two complex scalar fields, which we dub h1,2. Now, N = 2 SUSY would
dictate that its coupling to the complex scalar in the vector multiplet be,
too, proportional to ne, i.e. its coupling to the vector gauge boson A3

µ:

Leff ⊃
√

2neh1φh2 . (37)

Then, after the symmetry breaking, this induces a mass term for the hyper-
multiplet m =

√
2ane, which means this state satisfies the BPS bound at the

classical level. With a similar argument as before, as the vacuum respects
N = 2 SUSY, this means that the bound is satisfied at the quantum level,
too. If we had a magnetic monopole with magnetic charge nm, instead, and
we applyied a S duality transformation, we would get, in the theory now
described by the dual field φD, a term

Leff ⊃
√

2nmh1φDh2 . (38)
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with mass m =
√

2aDnm with, most importantly aD = ∂F/∂a .
Thus, on a vector (aD, a), a generic dualityA ∈ Sp(2,Z) acts as (aD, a)→

A · (aD, a). Since masses are physical observables, Eq. (26) has to be left
invariant by the action of A, meaning that the vector of charges (nm, ne)
must transform as (nm, ne) · A−1. Consistently, then, an S transformation
acts by

S : (nm, ne)→ (−ne, nm) , (39)

and a T transformation as

T : (nm, ne)→ (nm, ne − nm) . (40)

Notice that the latter is consistent with the Witten effect7.

5 Singularities and monodromies

We are now in the position to fully understand the singularity structure of
the moduli space. In particular, we want to obtain the functions a(u) and
aD(u), and invert one of them to plug into the other and obtain F(a) and
more importantly τ(a) = ∂2F(a)

/
∂a∂a . Let us start by looking at the

semiclassical region u → ∞, where we can safely use the classical relation
u = a2 and the one loop expression for8 F :

F1-loop =
i

2π
a2 log

a2

Λ2
, (41)

where Λ is the strong coupling scale. A poweful non-renormalization theo-
rem ensures that N = 2 SUSY is one-loop exact, so that the perturbative
contributions are all captured by Eq. (41). Then, from aD = ∂F/∂a , we
can get

aD =
i

π
a

(
log

a2

Λ2
+ 1

)
. (42)

We can now take a counterclockwise contour in the u-plane, u→ e2πiu with
very large |u|. As in this region u = a2, we see that this corresponds to
a→ −a. For aD, instead

aD →
i

π
(−a)

(
log

e2πia2

Λ2
+ 1

)
= −aD + 2a . (43)

So this transformation acts on the vector (aD, a) as(
aD
a

)
→M∞

(
aD
a

)
with M∞ =

(
−1 2
0 −1

)
. (44)

7see Quentin’s first lecture
8this result has been obtained by Seiberg in [11]
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Notice that M∞ ∈ Sp(2,Z) as expected, and in particular M∞ = −T−2. A
matrix M of this kind is called monodromy around the loop. This shows that
there is a singularity at u = ∞, which must be matched by other isolated
singularities somewhere else on the plane, with corresponding matrices Mi

so that

M∞ = M1M2 . . .Mk , (45)

since the contour at infinity can be deformed to encircle all of the other
singularities.

What do these matrices look like? Singularities in the moduli space
correspond to states becoming massless. For example, in the classical theory,
we have a singularity in u = 0 that corresponds to the gauge bosons A2,3

µ

becoming massless. This singularity signals that the effective theory is no
longer valid. In this example, this is because to have a correct description at
u = 0 we need a theory where these particles must be included as degrees of
freedom. Quantum effects, however, may move the singularities away from
the origin. Nonetheless, we have a way to get a hang on what they look
like. We already showed that, given a singularity with magnetic and electric
charges (nm, ne), a monodromy matrix M acts on it as

(nm, ne)→ (nm, ne)M
−1 . (46)

Now, the monodromy matrix around a singularity has to be characterized by
the singularity itself. More specifically, it must leave the vector (nm, ne) of
the singularity invariant, i.e. (nm, ne) has to be one of its eigenvectors with
unit eigenvalue. Requiring M ∈ Sp(2,Z) together with the latter condition
fixes

M(nm, ne) =

(
1 + 2nmne 2n2

e

−2n2
m 1− 2nmne

)
. (47)

We then have to solve Eq. (45) with matrices in the shape of (47). To this
end, the last step consists in counting how many singularities the moduli
space under consideration has.

As mentioned, the global R-symmetry is broken by the fermion charges
down to Z8, transforming φ as9 φ→ eπn/2φ. Thus, on a generic point in the
moduli space where u ∼ tr

[
φ2
]
6= 0, this symmetry is broken down to Z4.

However, the theory has to be invariant under the full Z8, meaning that the
physics has to be the same sending u → −u. This implies that, except for
the fixed points 0 and ∞, the singularities must come in pairs. So the least
one can do is put a singularity at u = 0, which is also what is suggested by
the classical theory. However, this would mean that, in shrinking the loop
from around infinity to around 0, we encounter no other singularity, and

9Remember that φ has R−charge=2
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M0 = M∞. However, M∞ does not change a2 (see Eq. (44)), so a2 is not
affected by any monodromy and it is a good coordinate on the whole moduli
space. However, this would mean that we need just one patch to describe
the moduli space, in contrast with what was proven earlier.

The next simplest case is the one where we have three singularities, ∞
and ±u0. Notice that in the limit Λ→ 0, a always lies in the classical region
(i.e. a � Λ always) and one should recover the classical theory with only
two singularities at u = 0 and u = ∞. Thus, u0 ∝ Λ2, and we can safely
rescale so that u0 = Λ2.

What are the states that become massless here? A non-zero value for u
introduces a characteristic scale in the theory. If it were the gauge bosons
to become massless, we would recover the full SU(2) gauge group. However,
since N = 2 SUSY is conserved on the moduli space, the Lagrangian of the
theory there would still be the one in Eq. (17), which has no characteristic
scale.

The only other states in the theory, at least classically, are monopoles
and dyons. For two singularities, the condition in Eq.(45) becomes

M∞ = MΛ2M−Λ2 . (48)

Requiring M±Λ2 to be of the form in Eq. (47) one finds the solutions:

MΛ2 =

(
1 0
−2 1

)
, M−Λ2 =

(
−1 2
−2 3

)
, (49)

corresponding to two states with charges

(nm, ne) = ±(1, 0) , (n′m, n
′
e) = ±(1,−1) (50)

So we finally see the nature of the states becoming massless at these singu-
larities: a monopole with charge ±(1, 0) and a dyon with charge ±(1,−1).
Incidentally, one can prove that solving Eq. (45) with matrices of the form
of Eq. (47) with k > 2 is not possible.

Now, an holomorphic function is defined univocally by its singularities.
Thus, by looking for expressions with singularities in ±u0 and at∞, Seiberg
and Witten found the two functions:

a(u) =

√
2

π

∫ Λ2

−Λ2

dx

√
x− u√
x2 − Λ4

(51)

aD(u) =

√
2

π

∫ u

−Λ2

dx

√
x− u√
x2 − Λ4

(52)

Inverting Eq. (51) to get u(a) and plugging it into Eq. (52) we obtain the

dependence of aD(a), whence we can get the expression for τ(a) = daD(a)
da ! It

is worth checking what these expression look like close to the singularities.
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• For u → ∞ we have a ∼
√
u and aD ∼ i

π

√
u log u

Λ2 ∼ i
πa log a2

Λ2 ,
reproducing the semiclassical result. One can check that there is no
value of (nm, ne) that gives a vanishing mass, in agreement with the
fact that no additional particle becomes massless for u→∞.

• For u → Λ2 we have a ∼ i
πaD log

a2D
Λ2 and aD ∼ (u − Λ2). Close to

Λ2, a is singular while aD vanishes. This is the correct behavior for a
magnetic monopole of charge nm becoming massless at u = Λ2

• For u→ −Λ2 we have a− aD ∼ (u+ Λ2) and a ∼ i
π (aD − a) log aD−a

Λ .
This means that at u = Λ2 we have a singularity when aD = a,
meaning that a particle with nm = −ne becomes massless here, again
in agreement with the dyon we found before.

Finally, one can check that for no values of u the vev a vanishes, showing
that the point a = 0 is not part of the moduli space anymore, and nowhere
in the moduli space extra massless gauge bosons arise.
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