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1 Basics of String Theory

1.1 Particle Spectrum

We begin with an extremely abridged review of the particle spectra present
in the low energy effective actions of critical superstring theory.

There are 5 distinct 10D superstring theories: Type IIA, Type IIB, E8× E8

Heterotic, SO(32) Heterotic, and Type I. In this lecture, we will be concerned
with the second of these theories, but we will start quite general.

The superstring is a 1D object that maps out a 2D surface - the worldsheet
- as it evolves in time. A classical string configuration is determined by
its spacetime coordinates XM(t, σ). Here t and σ are coordinates on the
worldsheet. One can think of the XM coordinates as bosonic fields living
on the 2D worldsheet. For the superstring, we supplement these fields with
worldsheet spinor fields ΨM(t, σ) = (ψM

L (t, σ), ψM
R (t, σ)). String dynamics

are then defined by introducing an action for the {XM ,ψM
L ,ψM

R }. We will
not go into such detail here, but merely state that the relevant equations of
motion are

∂+∂−X
M(t, σ) = 0 (1)

∂−ψL(t, σ) = 0 (2)

∂+ψR(t, σ) = 0 (3)

where we have introduced left- & right-moving coordinates σ± = t ± σ &
∂± = ∂t ± ∂σ. These equations of motion explain the subscript convention
for the spinors - ψL/R is a left/right moving worldsheet spinor. We can also
decompose XM(t, σ) = XL(σ

+) +XR(σ
−).

To define the Type II theories, we introduce equal amounts of left- & right-
moving fields withM = 0, .., 9. The heterotic theories have different numbers
of left- and right-moving fields.

The equations of motion must be supplemented with boundary conditions.
We can consider two types of strings - closed strings and open strings. Closed
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strings have the obvious boundary condition

XM(t, σ + π) = XM(t, σ) (4)

For open strings, one has two choices

• Neumann:

∂σX
M |σ=0,π = 0 (5)

This condition implies no momentum is flowing out of the string end-
points.

• Dirichlet:

XN |σ=0,π = XN
0 (6)

(7)

Where we pick some p such that N = 1, .., 9− p. This implies that the
string endpoints are fixed to move on some p-dimensional surface. This
clearly breaks the Poincare invariance. The surfaces are the Dp-branes
of string theory.

Closed worldsheet fermions have two choices of boundary conditions:

• Neveu-Schwarz (NS) - or anti-periodic:

ψM
L/R(t, σ + π) = −ψM

L/R(t, σ) (8)

• Ramond (R) - or periodic:

ψM
L/R(t, σ + π) = ψM

L/R(t, σ) (9)

Importantly, boundary conditions for left/right moving sectors can be chosen
independently. There are corresponding NS & R boundary conditions for
open string worldsheet fermions, but we will not need them.

Using these boundary conditions, one can expand the coordinates {XM ,ψM
L ,ψM

R }
in terms of oscillators. After quantizing the theory, the creation operators for
these modes define quantum string states. The massless states from this pro-
cedure then define the particle content of the effective quantum field theory.
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There is one additional wrinkle - to obtain a well-defined theory, a projection
operation must be enacted on the string states (the GSO projection). We
will not go into detail on this procedure except to say that there are two
inequivalent projections, leading to the two Type II theories.

We consider the bosonic massless spectrum of the Type II’s. This is consists
of the R-R and NS-NS sectors:

The NS-NS sector is identical between the Type II’s - it consists of

• The graviton gµν

• The 2-form B2

• The dilaton ϕ

The vacuum expectation value of the dilaton ϕ sets the coupling constant of
the string theories: gs = ⟨eϕ⟩.

TheR-R sector of the Type II’s consists of rank-(p+1) antisymmetric tensor
fields ((p+1)-forms) Cp+1. These are gauge potentials that generalize the
1-form potential A1 = AMdx

M of electromagnetism. In terms of coordinate
components,

C(p+1) =
1

(p+ 1)!
CM1···Mp+1dx

M1 ∧ · · · ∧ dxMp+1 (10)

Similar to the EM field strength F = dA1, the (p+1)-forms have (p+2)-
form field strengths Fp+2 = dCp+1. Since the exterior derivative operator
satisfies d2 = 0, the field strengths are invariant under gauge transformations
Cp+1 → Cp+1 + dΛp.

The precise p-form content differs between the two Type II’s - IIA has only
odd-form potentials and IIB has only even-form potentials.:

• IIA: C1 & C3

• IIB: C0, C2, & C4

The above bosonic field content is supplemented with fermions to furnish two
distinct N = 2 10D supergravity theories. But there is a small puzzle - none
of states defined above are charged under the p-form potentials, so what are
they sourced by?
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1.2 Non-perturbative Spectrum

To answer the lingering question from the previous section, let us first recall
some basics of electromagnetism. The EM 1-form potential A1 is sourced by
charged particles, so to the Maxwell action we add an interaction term

S ⊃ e

∫
A1 = e

∫
W

Aµ
dxµ

dt
dt (11)

where t is the proper time along the charged particle’s worldline. Note that
we integrate over a 1D surface - the worldline. The generalization of this to
our (p+1)-form potentials is

S ⊃ Qp

∫
Wp+1

Cp+1 =
1

(p+ 1)!

∫
CM1···Mp+1

∂xM1

∂σ0
· · · ∂x

Mp+1

∂σp
dp+1σ (12)

The integration is over a (p+1)-dimensional “worldvolume”, implying that
the source of the Cp+1 is an object with p spatial dimensions - these are the
Dp-branes of string theory !

From the R-R spectrum in the previous section, we deduce that the Type
II’s have distinct Dp-brane states:

• IIA: D0-& D2-branes

• IIB: D(-1)-, D1-, & D3-branes

For p > 1, the Dp-branes are extended membranes. The D1-brane is a type
of string that we will refer to as the D-string. Similarly, henceforth we
will call the fundamental string of IIB the F-string. The D0-brane is a 0-
dimensional object - a particle. The D(-1)-brane appears a bit odd - it has
total spacetime dimension 1+(-1) = 0. This is an object that is localized in
space as well as time - it is an instanton, the D-instanton.

The Dp-branes are non-perturbative (half-)BPS states in the Type II theo-
ries. Their tensions are given by

Tp =
1

gs(2π)p(α′)(p+1)/2
(13)

One can compare this to the tension of the F-string is

TF =
1

2πα′ (14)
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1.3 Electric & Magnetic Charges

The Dp-branes introduced in the previous section are electrically charged
under the Cp+1 potentials. The question we want to answer now is - are
there objects that are magnetically charged under the Cp+1?

Once again, we turn to electromagnetism to motivate the answer. Gauss’
Laws in the presence of monopoles read

g =

∫
S2

B⃗ · dS⃗

e =

∫
S2

E⃗ · dS⃗ (15)

These can be written in a more covariant language using the differential form
version of the equation of motion:

dF = ⋆Jm (16)

d ⋆ F = ⋆Je (17)

Where Je(m) is the electric (magnetic) current 1-form with components Jµ =

(ρ, j⃗). The Hodge star operator ⋆ is an operator that maps p-forms to
(D-p)-forms in D-dimensions. In 4D, it simply takes a 2-form into a 2-form.
Integrating the above (and using the generalized Stokes theorem) gives

g =

∫
S2

F

e =

∫
S2

⋆F (18)

In 10D, the Hodge star maps the (p+2)-form field strengths Fp+2 to (8-
p)-forms F8−p = ⋆Fp+2. Integrating over a (8-p)-dimensional sphere that
encloses the Dp-brane in the transverse (9-p) space, we have

Qp =

∫
S8−p

F8−p =

∫
S8−p

⋆Fp+2 (19)

Generalizing the other electromagnetism equation, we determine the mag-
netic charge enclosed in a (p+2)-dimensional sphere as

Q̃6−p =

∫
Sp+2

Fp+2 (20)
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In 10D, a (p+2)-dimensional sphere can surround a (6-p)-dimensional brane,
hence the notation for the magnetic charge. Thus we deduce that the mag-
netic dual of a Dp-brane is a D(6-p)-brane! Here we are have motivated
these branes from the standpoint of electric-magnetic duality, but they do
exist within the Type II theory. We can now make the follow table of poten-
tials and charged states for IIB:

Cp+1 Electric Magnetic
C0 D(-1)-brane D7-brane
C2 D-string D5-brane
C4 D3-brane D3-brane
B2 F-string NS5-brane

Note that the 5-form field strength F5 is self-dual under the Hodge star:
F5 = ⋆F5, so the D3-brane carries a self-dual charge and is electrically and
magnetically charged under C4. We have also added an entry for B2. The
F-string is electrically charged under B2 and the magnetic dual is a different
object called an NS5-brane. NS5-branes are not D-branes and in fact their
tension scales as TNS5 ∼ g−2

s . These are actually solitons.

We end this section by noting that the charge quantization argument of Dirac
can be generalized to the Dp-branes to give

QpQ̃6−p ∈ 2πZ (21)

2 Self-Duality of Type IIB

2.1 IIB Supergravity & SL(2,R)

Before describing the non-perturbative self-duality of IIB, we first note that
the low-enery supergravity theory of IIB (dubbed IIB supergravity) has a
global SL(2,R) symmetry. In terms of the spectra outlined above, the IIB
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supergravity action1 is

SIIB = SNS + SR + SCS (22)

SNS =
1

2κ10

∫
d10x

√
−Ge−2ϕ

(
R + 4∂Mϕ∂

Mϕ− 1

2
|H3|2

)
(23)

SR =
1

2κ10

∫
d10x

√
−G

(
− 1

2
|F1|2 −

1

2
|F̃3|2 −

1

4
|F̃5|2

)
(24)

SCS = −1

2

1

2κ10

∫
10D

C4 ∧H3 ∧ F3 (25)

We have labeled the sectors “NS”=Neveu-Schwarz, “R” = Ramond, and
“CS” = Chern-Simons. Where 2κ10 = (2π)7(α′)4 and

Fp+1 = dCp (26)

F̃3 = F3 − C0 ∧H3 (27)

F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3 (28)

This is the action in the String frame. Performing a conformal rescaling,
we get the action in the Einstein frame:

SIIB =
1

2κ10

∫
d10x

√
−GE

(
RE − ∂Mτ

∗∂Mτ

2(Im(τ)2
− 1

2
MijG

i
3 ·G

j
3 −

1

4
|F̃5|2

)
− ϵij

8κ210

∫
10D

C4 ∧Gi
3 ∧G

j
3 (29)

We have also repackaged the fields:

τ = a+ ie−ϕ (30)

Mij = eϕ
(
|τ |2 −C0

−C0 1

)
(31)

A2 =

(
B2

C2

)
(32)

G3 =

(
H3

F3

)
= dA2 (33)

1There is no known fully covariant action for IIB supergravity. This is due to the
self-dual field strength F̃5. However, one can vary the action above and then impose the
self-duality constraint F̃5 = ⋆F̃5
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This results in an action that is manifestly invariant under

τ → aτ + b

cτ + d

M → (Λ−1)TMΛ−1

Ai
2 → Λi

jA
j
2 (34)

Gi
3 → Λi

jG
j
3

F̃5 → F̃5

GE → GE

When

Λ =

(
d a
b c

)
(35)

ad− bc = 1 (36)

thus Λ ∈ SL(2,R) and the transformations above describe the action of
SL(2,R) on the IIB supergravity fields.

We can consider a particular element of the transformation group

Λ =

(
0 1
−1 0

)
(37)

which sends

τ → τ ′ = −1

τ
(38)

If we set C0 = 0 and using ⟨eϕ⟩ = gs, we find

g′s =
1

gs
(39)

This is a nonperturbative mapping - a duality - between strong and weak
coupling. This is an example of an S-duality. Broadly speaking, S-duality
relates a theory with coupling gs to another theory with coupling 1/gs. Here
we see that IIB is S-dual to itself - this is a “self-duality”.
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2.2 IIB & SL(2,Z)

Before expounding the physics of the IIB self-duality, we first refine the du-
ality since the full continuous SL(2,R) duality symmetry above is valid only
in the classical theory. The actual duality symmetry of IIB is the SL(2,Z)
subgroup. This can be argued from several angles, including charge quanti-
zation [1] - the F-string has one unit of B2 charge. Under a duality transfor-
mation, the F-string is transformed into a string with d units of B2 charge.
Charge quantization demands that this be an integer - the maximal subgroup
of SL(2,R) with integer d is the set of matrices(

a αb
c/α d

)
(40)

for integers a, b, c, d and some real constant α that can be absorbed into a
redefinition of C2. Thus we arrive at SL(2,Z). From this point on, we will
refer to the Z2 subgroup of SL(2,Z) generating gs ↔ g−1

s as the S-duality
group while the full duality group will be simply called SL(2,Z)2.

As hinted at in the explanation above, the SL(2,Z) duality symmetry of
IIB does not just act on the fields, but on the states of the theory as well.
In general, we do not know how the duality symmetry acts on a generic
state [1]. However, we do know how it acts on BPS states, whose tensions
are protected by supersymmetry and therefore are known functions for all
values of gs. We can use this information as a check on the veracity of the
SL(2,Z) duality.

Let us examine the two strings already present in the theory - the F-string
and the D-string. In the Einstein frame, these have tensions

TF =

√
gs

2πα′

TD =
1

2π
√
gsα′ (41)

so that under S-duality TF ↔ TD. However, this is not yet satisfactory.
At weak coupling, the F-string is light and defines the low energy particle

2The story is actually more subtle - including the fermionic sector involves extending
the duality group to Mp(2,Z), the metaplectic group [2]. Many thanks to Timo for pointing
this out.
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spectrum. What happens to this particle spectrum at strong coupling? It
turns out that there is an exact match in the spectrum of massless states
between F-strings and D-strings. We take this as evidence for the veracity
of SL(2,Z) duality - exchanging strong coupling with weak coupling means
exchanging a light F-string with a light D-string, but the massless spectrum
remains unchanged.

We also comment that S-duality exchanges D5-branes with the NS5-branes
- in Einstein frame

TNS5 =
1

(2π)5
√
gs(α′)3

TD5 =

√
gs

(2π)5(α′)3
(42)

So indeed TF ↔ TD.

In the following sections, we explore the applications and implications of this
duality.

3 Applications of SL(2,Z) Duality

3.1 BPS states of IIB

A full SL(2,Z) duality implies the existence of strings that are electrically
charged under both B2 & C2 - the so-called (p, q) strings. These have ten-
sion

τp,q =
1

2πα′√τ2
|p+ τq| (43)

which is invariant under SL(2,Z).

How do we interpret these states? An obvious interpretation is that these are
simply states with p F-strings and q D-strings. But this is too naive - such
a configuration is not supersymmetric and is unstable. This can be argued
from BPS bounds. However, such a state can lower its energy. If we have a
single D-string with a single F-string, then the F-string can “dissolve” in the
D-string, which results in the D-string with flux.
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We reproduce the relevant diagram from [3] above. This is an example of a
D-brane bound state.

The story above generalizes to D7-branes, in which case we have (p, q) 7-
branes. These play an important role in describing IIB in terms of F-theory,
as discussed below.

We can also get information on allowed Dp-brane configurations from SL(2,Z) [4,
5]. For example, by definition, the F-string can end on a pair of D5-branes:

Assuming the duality, D-strings are allowed to end on NS5-branes!

This also holds for D3-branes. The C4 potential is invariant under SL(2,Z)
and so the D3-brane is self-dual. We are allowed to have a configura-
tion:
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So now we find D-strings can end on D3-branes!

The above are interesting and nontrivial results - F-strings can end on D-
branes, but a priori it is not obvious that D-branes can end on other D-branes.
However, SL(2,Z) duality demands that this be so.

As a final comment, let us return to the D3-branes. The theory on a stack
of N D3-branes is a 3+1 dimensional N = 4 U(N) SYM theory with gauge
coupling g2D3 = 2πg. Since the D3-brane is self-dual, this implies that the
SL(2,Z) is a duality of the gauge theory. This is nothing but Montonen-Olive
duality of the low-energy theory! More on this below. Extending this idea,
an F-string looks like a point source to the worldvolume theory of the D3-
brane - this is just an electric charge for the gauge field. The S-dual picture
is a D-string ending on the brane, which acts as a magnetic source.

3.2 Geometrization of SL(2,Z): M-Theory & F-Theory

The discussion here is based on [6, 7, 8]. A simple observation is possible from
the preceding sections - the duality group of IIB, SL(2,Z), is the same3 as the
group of large diffeomorphisms4 of a torus (or elliptic curve). In particular,
the τ field defined above transforms exactly like the complex structure of a
torus under a modular transformation.

This could simply be a coincidence, but it turns out that this is a hint for
understanding IIB from M-theory and F-theory.

We first turn to 11D M-Theory. Let us compactify two of the M-theory
dimensions (R1,10 → R1,8 ×T2) and let R1 and R2 denote the radii of the T

2

3Note that the modular group of a torus is actually PSL(2,Z) = SL(2,Z)/{±1}). I leave
the resolution of this slight mismatch as an exercise for the determined reader.

4Also called the modular group or mapping class group (MCG).
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amd θ their relative angle. The area A and complex structure τ of the T2

are then

A = R1R2 sin θ (44)

τ =
R2

R1

eiθ (45)

If one takes the limit of vanishing area A → 0 while keeping τ fixed, then
the 9D M-theory grows an extra dimension. This 10D theory is the 10D IIB
theory with complex coupling τ = C0 + ie−ϕ. This is quite incredible - the
duality symmetry of IIB is understood as a geometric symmetry
in M-theory. Namely, the modular symmetry of the M-theory torus.

F-theory takes this interpretation even further. One way to view F-theory
is as IIB with D7-branes. As described above, D7-branes are magnetically
charged under the 0-form potential C0 and their presence implies a spacetime
dependent profile for τ . The idea of F-theory is to interpret this varying τ
geometrically as a torus and its varying profile as defining an elliptic fibration5

over the compactification manifold. Thus we arrive at the usual statements
of F-theory as a 11+1D theory where two of the spatial dimensions are a
T2. The strength of this geometric picture is that it allows one to go beyond
perturbative IIB theory.

These pictures all tie together neatly - F-theory on T2 is the A → 0 limit
of M-theory on T2, which is 10D IIB with coupling τ . This then extends to
lower dimensional compactifications. However, one should take care - there
is no supergravity theory with signature (-1,11), and IIB is not the Kaluza-
Klein reduced theory of F-theory on T2.

For more details and far better discussion, see [6, 7].

3.3 Holography & Conformal Field Theory

This section is based on the recent paper [9].

5Loosely speaking, one can think of a fibration as stacking one manifold (the fiber) over
another (the base).
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The broad6 statement of holography is the duality

(D+1)-dimensional gravity in AdS ↔ D-dimensional CFT (46)

The quintessential example is the duality between IIB on AdS5 ×S5 and 4D
N = 4 Super Yang-Mills (SYM) [17, 18, 19]. The N = 4 SYM theory is has
a complex coupling constant

τ =
θ

2π
+ i

4π

g2
(47)

that enjoys an SL(2,Z) duality symmetry

γ · τ → aτ + b

cτ + d
(48)

This is not a surprise - the bulk dual is IIB, so this boundary symmetry is the
holographic dual of IIB’s SL(2,Z) symmetry. We also argued this above from
the self-duality of D3-branes under SL(2,Z) duality. This duality implies
that inequivalent values τ are points in the SL(2,Z) fundamental domain
F = H/SL(2,Z), where H is the upper half plane.

If one has a boundary SYM observable O(λ) that depends on the ’t Hooft
coupling λ = g2N , then the statement of holography is that there is a dual
observable OSUGRA in the supergravity theory such that

O(λ→ ∞) = OSUGRA (49)

The basic idea of [9] is quite simple - since a SL(2,Z) duality symmetry
is present, one should harness this symmetry from the outset to simplify
. On the CFT side, the authors use SL(2,Z) spectral theory to decompose
SYM observables and derive several interesting results. On the holographic
side, they are able to harness an ensemble of SYM theories to find a new
interpretation of IIB supergravity.

3.3.1 CFT Operators

Observables in the SYM CFT are functions of the complex coupling con-
stant τ . In particular, “non-perturbatively well-defined” observables O(τ)

6Perhaps not the broadest definition - other possibilities include attempts to extend
this to dS spacetimes [10, 11] as well as more unusual dualities [12, 13, 14, 15, 16]
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are modular functions:

O(γ · τ) = O(τ) (50)

and should be square-integrable with respect to the Petersson inner prod-
uct

(f, g) =

∫
F

dxdy

y2
f(τ)(g(τ))∗ (51)

τ = x+ iy

SL(2,Z) spectral theory then gives an expansion of O(τ) in terms of its aver-
age over τ and its overlaps with the real-analytic Eisenstein series Es(τ) and
the Maass cusp forms ϕn(τ):

O(τ) = Ō +
1

4πi

∫
Res= 1

2

(O, Es)Es(τ)ds+
∞∑
n=1

(O, ϕn)ϕn(τ) (52)

The authors of [9] use this spectral decomposition to prove several conjec-
tured expressions for SYM observables and draw several interesting conclu-
sions. For example, the Fourier expansion of the above decomposition implies
that the k-instanton sectors are completely determined by the k=0,1 sectors.
In a sense, the instantons of SYM are redundant.

3.3.2 Ensembles

Formally, one can consider an ensemble of SYM boundary theories, where
each member of the ensemble corresponds to a single point in the fundamental
domain of τ . It is then possible to define averaged quantities with respect to
this ensemble - for example, for an observable O(τ), the ensemble average is
⟨O⟩. An incredible result of [9] is the statement that

OSUGRA = ⟨O⟩ (53)

Thus one can think of IIB supergravity from two separate perspectives - as
the low energy limit of IIB string theory and as an ensemble average over
the duality group SL(2,Z). This echoes of results found in holography of
lower dimensions, where ensemble averages of boundary theories result in
extremely simple bulk theories.
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3.4 Consistency of the Duality

Unfortunately this section remains unwritten due to time constraints, but I
encourage the reader to look at the interesting discussion in [20].

4 Further Reading

Much of the basic discussion above is adapted from the numerous fantastic
texts on string theory: [21, 3, 8, 1, 22, 23]. For F-theory [24, 25, 26], I
recommend the excellent reviews by our very own Timo Weigand [7, 6]. For
holography, some of my favorite reviews are: [27, 28, 29, 30, 31]. For lower
dimensional holography, I recommend [32].
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