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1 Introduction

The gauge group of the Standard Model of particle physics is SU(3)c × SU(2)L × U(1)Y .
At energies below ∼ 100GeV, the electroweak gauge group SU(2)L × U(1)Y gets broken
to U(1)em. It is conceivable that the Standard Model gauge group is also the product of
the symmetry breaking of some theory with higher symmetry. A theory in which the gauge
groups of the Standard Model get unified at some high energy scale, is called a Grand Unified
Theory (GUT). Many different kinds of GUTs have been proposed, based on different gauge
groups (e.g. SU(5), SO(10), E(6), ... [1, 2, 3] respectively). The energy scale at which grand
unification occurs depends on the model, but is usually around 1015GeV

Since the temperature of the early universe was very high (we know that the tempera-
ture was 10MeV during Big Bang Nucleosynthesis, but it could have been many orders of
magnitude higher before), it is possible that the GUT symmetry was restored. As we will see
in this seminar, magnetic monopoles might have been formed in the GUT-breaking phase
transition. Unfortunately, the density of monopoles is predicted to be much too large to be
consistent with observations. This is the so-called monopole problem, for which inflation
forms the most well-known solution.

The outline of these lecture notes is as follows:

• Some basic relations of cosmology are summarized in Section 2.

• Section 3 discusses the formation of magnetic monopoles in a cosmological phase
transition, and their subsequent evolution.

• In Section 4 two solutions to the monopole problem are discussed.

Some reviews on monopoles in cosmology can be found in Chapter 8 of [4], Chapter 7 of
[5], and [6] and [7].

2 FRW cosmology

In this section, we will summarize some cosmological relations that are important for the
rest of the discussion. The treatment is based on [8]. We will describe the spacetime of the
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expanding universe by the famous Friedmann-Robertson-Walker (FRW) metric

ds2 = dt2 − a2(t)δijdxidxj , (1)

where a(t) denotes the scale-factor and we have assumed that the universe is spatially
flat, isotropic and homogeneous. The scale factor relates so-called comoving coordinates
xi = {x1, x2, x3} to physical coordinates xiphys = a(t)xi. The physical velocity of an object
thus gets two contributions:

viphys =
dxiphys
dt

= a(t)
dxi

dt
+
da

dt
xi ≡ vipec +Hxiphys , (2)

where the first contribution is the peculiar velocity, which is measured by a comoving
observer, and the second is called the Hubble flow, with the Hubble parameter defined as

H ≡ ȧ

a
. (3)

We will now assume that the constituents of the universe can be described by the stress-
energy tensor of a perfect fluid

Tµν = (ρ+ P )uµuν − Pgµν , (4)

where ρ is the energy density of the fluid, P the pressure and uµ the four-velocity. The
0-th component of energy-momentum conservation ∂µT

µν in a FRW-background yields the
following continuity equation

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0 . (5)

The relation between the pressure and energy density defines the equation of state w

w ≡ P

ρ
. (6)

The most commonly encountered equations of state are cold (dark) matter (w = 0), radia-
tion (w = 1/3) and vacuum energy (w = −1). Plugging these relations into the continuity
equations, we find

ρ ∝ a−3 , matter , (7)

ρ ∝ a−4 , radiation , (8)

ρ ∝ a0 , vacuum energy . (9)

By plugging the stress-energy tensor of the perfect fluid into the Einstein equations in the
FRW background, we find the Friedmann equations

H2 =

(
ȧ

a

)2

=
8πG

3
ρ =

1

3M2
P

ρ, (10)

ä

a
=− 4πG

3
(ρ+ 3P ) = − 1

6M2
P

(ρ+ 3P ) , (11)
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with G Newton’s constant and MP = (8πG)−1/2 = 2.435 × 1018GeV the reduced Planck
mass. From the Friedmann equations, we find for a single component universe (with w 6=
−1)

a(t) ∝ t
2

3(1+w) . (12)

Radiation The energy density of a relativistic gas of particles depends on the temperature
via

ρ =
π2

30
g∗(T )T 4 , (13)

where g∗(T ) denotes the number of relativistic degrees of freedom at temperature T . Com-
bining eqs. (8), (12) and (13) for a radiation-dominated universe, we find that

ρ ∝ t−2 , T ∝ t−1/2 , (14)

implying that the energy density and temperature of the early universe increase as we go
back in time.

3 Formation of monopoles: Kibble-Zurek mechanism

The Kibble-Zurek mechanism was proposed by Kibble [9] in 1976 (see also [10]) and refined
by Zurek in 1985 [11]. Their works describe how magnetic monopoles (and other cosmo-
logical defects) can get formed in spontaneous symmetry breaking of GUTs, and estimate
the value of the correlation length around the critical temperature, which sets the density
of the monopoles.

3.1 Symmetry-breaking phase transition

As we have seen above, for a radiation-dominated universe, the temperature could be very
high in the early universe. At large temperature, the effective potential gets loop corrections
from interactions with the thermal bath. Following [9] we consider a gauge theory described
by

L =
1

8
TrBµνB

µν +
1

2
Dµφ ·Dµφ− V (φ) , (15)

with φ belonging to the N -dimensional vector representation of O(N)1, and

Dµφ = ∂µφ− eBµφ , (16)

Bµν = ∂µBν − ∂µBν + e[Bµ, Bν ] , (17)

V (φ) =
λ

8
(φ2 − η2)2 , (18)

1This is a simpler set-up than the Georgi-Galshow SU(5) GUT [1], in which the heavy symmetry-breaking
scalar is taken to be a scalar in the adjoint representation.
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at zero temperature the O(N) symmetry is spontaneously broken to O(N−1) by the vacuum
expectation value of φ, which satisfies (at tree level)

〈φ〉2 = η2 . (19)

At finite temperature the potential obtains one-loop corrections from interactions with the
thermal plasma. We neglect the fermions. At leading order in the temperature the potential
becomes

VT (φ) =
λ

8
(φ2 − η2)2 +

1

48
[λ(N + 2) + 6(N − 1)e2]T 2φ2 . (20)

A potential of this shape gives rise to a second-order phase transition. For T > Tc, with

Tc = η

(
N + 2

12
+
N − 1

2

e2

λ

)−1/2

, (21)

the minimum of the potential occurs at φ = 0. Below that temperature, the field acquires
a vacuum expectation value

〈φ〉2 = η2
(

1− T 2

T 2
c

)
. (22)

The vev thus spontaneously breaks the O(N)-symmetry to O(N − 1) symmetry.

3.2 When do monopoles get formed?

Suppose that some gauge theory with symmetry group G gets spontaneously broken down
to a subgroup H. ‘t Hooft-Polyakov monopoles arise when the second homotopy group
π2(G/H) is nontrivial. This occurs when a Grand Unified Theory G = SU(5), SO(10), ...
gets broken to the Standard Model gauge group H = SU(3)C ×SU(2)L×U(1)Y , for which
π2(G/H) = Z . Such a nontrivial second homotopy group does not occur when the original
group contains a U(1), implying that no ‘t Hooft-Polyakov monopoles are formed during
the electroweak phase transition. See Jeremy’s notes for a more extensive discussion.

Quick reminder of ‘t Hooft-Polyakov monopoles Let us consider a Higgs-field ϕ
in the vector representation of SO(3). The monopole corresponds to the ‘Hedgehog’ field
configuration.

ϕa(~r) = vf(r)
ra
r
, with r = |~r| , (23)

and ra denotes the ath component of the position vector ~r. The function f describes the
‘length’ of the Higgs field vector, and equals f = 0 at the origin and f = 1 at r → ∞. In
order to satisfy the condition Dµϕ

a = 0, the gauge field should satisfy

Aaµ → εµab
rb
er2

, (24)

which corresponds to a magnetic monopole.
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The mass of the monopole is approximately given by (this is the Prasad-Sommerfield
solution [12], which provides a lower bound)

mmon =
MV

α
, (25)

where MV is the mass of the vector boson of the broken symmetry group and α = e2/(4π)
is the fine structure constant.

3.3 Estimate of the correlation length and initial density

During the phase transition, we expect that the field φ will find a different orientation in
different regions in space (if the regions are sufficiently separated from each other). These
regions with expectation values of φ, are called ‘protodomains’, and ‘t Hooft-Polyakov
monopoles can form at the points where different domains meet. We will now estimate the
sizes of the protodomains, following Kibble [9].

Second-order phase transition We first study the second-order phase transition caused
by the potential of eq.(20). At T . Tc, a fluctuation back from the minimum of the potential
to φ = 0 corresponds to a difference in the potential energy

∆f =
λ

8
(〈φ〉2)2 . (26)

The scale of these fluctuations is set by ξ, the correlation length, which is given by

ξ−1 = mφ =
√
λ|〈φ〉| , (27)

where mφ is the mass of the field undergoing the phase transition. Fluctuations with a scale
ξ, can frequently occur as long as

ξ3∆f . T . (28)

At the temperature T for which (neglecting an O(1) factor)

1

T 2
∼ 1

T 2
c

+
λ

η2
, (29)

fluctuations become energetically unfavorable. At that moment the correlation length is
given by

ξ−1 =
√
λ〈φ〉 =

√
λη

√
λT 2

c

η2 + λT 2
c

, (30)

which is roughly equal to λTc or λη (depending on the value of λ and N). This value of
the correlation length sets the initial scale of the protodomains. Monopoles form where
different domains meet. The initial density of monopoles is thus given by 2

nmon =
1

ξ3
∼ λ3η3 . (31)

2Strictly speaking, only one monopole can form at the point where four domains meet, and the probability
that the field configurations are such that a monopole forms is somewhat smaller than one. The real initial
density will thus be somewhat smaller.
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First-order phase transition A first order phase transition occurs when a potential
barrier exists between the symmetric phase minimum and the broken phase minimum (such
a barrier can e.g. be generated by radiative corrections). In this case, the phase transition
proceeds by the nucleation of bubbles of broken symmetry. These bubbles expand and
collide, until the entire universe is in the broken vacuum. Monopoles can be produced when
bubbles with different field orientations collide. The number density of monopoles is set by
the typical bubble size at the time of collision. This quantity is not so easy to obtain (and
model-dependent). An upper bound on the bubble size is given by the typical horizon size
during the phase transition. We thus obtain a lower bound on the monopole density of

nmon > pd−3
H , (32)

where p is the probability factor for monopole formation and dH is the horizon size, given
by3

dH ∼
1

H
=
MP

T 2
c

√
90

g∗π2
. (33)

Note that dH is larger than the value of ξ that we obtained for a second-order phase
transition.

3.4 Zurek mechanism

Let’s consider the case of a second-order phase transition again. In the Kibble mechanism,
the time that the system needs to adjust to a fluctuation was not taken into account, i.e.
it was assumed that the system can react instantaneously. A more careful treatment of the
finite response time was done by Zurek [11] (see also [13, 14]).

Close to the critical temperatue, the correlation length and the relaxation time τ diverge

ξ = ξ0|ε|−ν , τ = τ0|ε|−µ , (34)

where µ, ν are critical exponents that are determined by the universality class. ε parame-
terizes the distance from the critical temperature

ε ≡ Tc − T
Tc

. (35)

Let us assume a linear relation between ε and t when the system passes through the critical
temperature:

ε =
t− tc
τQ

, (36)

where 1/τQ is called the quenching rate. There is a particular time t∗, for which the distance
to the critical time tc equals τ(t∗). For |t− tc| < |t∗ − tc|, the system can not keep up with

3It should be noted here that we assumed no strong supercooling. If the temperature at bubble collision
is much smaller than the critical temperature, the monopole density can be suppressed.
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the temperature change, and fluctuations are frozen. We find

|t∗ − tc| = τ0|ε(t∗)|−µ = |ε(t∗)|τQ , → |ε(t∗)| =
(
τQ
τ0

)− 1
µ+1

. (37)

We arrive at an updated prediction for the correlation length:

ξ(t∗) ∼ ξ0
(
τQ
τ0

) ν
1+µ

. (38)

We should notice that plugging in µ, ν = 1/2 and ξ0 ∼ τ0 ∼ 1/(
√
λTc), and τQ = 2tc the

correlation length is

ξ ∼
(
Tc
H

)1/3 1

λ2/3Tc
, (39)

which is comparable to the value obtained in eq.(30). An interesting aspect of [11] is that
Zurek draws an analogue between cosmological defect formation and formation of vortex
lines in superfluid helium. The mechanism has now been demonstrated experimentally in
different systems (see e.g. [15]).

3.5 Monopole problem

We have now made several estimates for the sizes of the protodomains. We will now estimate
the corresponding monopole density. The most conservative estimate comes from the case
of a first-order phase transition ξ = dH . At the time of formation, we find

n

T 3

∣∣∣
in
& p

(
Tc
MP

√
90

g∗π2

)3

. (40)

Taking Tc ∼ 1016GeV, g∗ ∼ 100 and p ∼ 1/10 we obtain n/T 3 & 10−10 (and n/s & 10−12).
Since monopoles are stable (up to annihilations, which we will discuss in Subsection 3.6),
their number density is only affected by the expansion of the universe. The ratio n/s thus
remains constant. The ratio of the monopole energy density to the critical energy density
is given by [5]

Ωmonh
2 ' 1024

(nmon

s

) mmon

1016GeV
. (41)

Remembering that the mass of the monopole is ∼ 1016GeV, and that Ωm = 0.32 and
h = 0.67, we conclude that the energy density in monopoles is unacceptably large. For the
case of a second-order phase transition, ξ < dH , so the problem is even more stringent.

3.6 Monopole annihilation

We have just seen that, if the monopoles get produced during a symmetry breaking phase
transition around the GUT scale, and their energy just redshifts thereafter, the density of
monopoles is much too large. But maybe monopole-antimonopole annihilation can solve
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the problem? The effect of annihilation on the monopole density was studied by Preskill in
1979 [16]. The evolution equation for the monopole density (assuming that the density of
monopoles and antimonopoles is equal) is given by

dnmon

dt
= −An2mon − 3Hnmon , (42)

where A characterizes the annihilation process. It can be estimated as

A =
1

e2bT 2
, (43)

where b ∼ 100. Eq.(42) can be integrated, and we find

nmon(T )

T 3
=

{( nmon

T 3

∣∣∣
in

)−1
+
MP

e2b

√
g∗π2

90

[
1

T
− 1

Tin

]}−1

. (44)

The annihilation rate cuts off when the mean free path of the monopoles becomes larger
than the capture rate, which occurs at a temperature

Tf ∼
e4mmon

b
, (45)

which determines the final density

nmon(Tf )

T 3
=

√
90

g∗π2
e6mmon

MP
. (46)

This density is still orders of magnitude too large, so the monopole problem is not solved by
annihilations. Note that annihilation only occurs if the initial density is larger than eq.(46),
otherwise the initial density simply remains constant.

4 Solutions to the monopole problem

We have seen that the amount of monopoles from a GUT-breaking phase transition is
unacceptably high, even when annihilations are taken into account. We will now consider
several solutions to the monopole problem.

4.1 No GUT

The most obvious solution is to assume that monopoles just do not get formed, either
because the universe does not reach a temperature high enough for restoration of GUT, or
because the forces simply do not get unified in a simple gauge group.
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4.2 Inflation

A possibly more attractive solution is cosmological inflation [17, 18], which actually solves
three cosmological problems at once: the flatness, horizon and monopole problem.

Inflation is a period of shrinking comoving Hubble radius,

d

dt
(aH)−1 < 0 , (47)

or accelerated expansion
ä > 0 . (48)

The result of inflation is that initial number densities get strongly diluted, and that the
entire observable universe (today) must have been in causal contact. The conditions for
inflation can only be fulfilled when

ε ≡ − Ḣ

H2
= −d lnH

dN
< 1 , (49)

where we defined dN = d ln a, measuring the numbers of e-folds of expansion. In order to
solve the horizon problem (why is the temperature of the CMB so uniform), inflation has
to persist for at least N ∼ 50 − 60 e-folds. Such a long period of inflation also sufficiently
dilutes the monopole density.

A straightforward way to satisfy the conditions for inflation is a domination of the
energy density by the potential energy of a scalar field, see e.g. [8] for further details.
When inflation ends, the energy density of the inflaton field gets transferred to radiation
during the ‘reheating’ era. If this process is very efficient, the temperature of the universe
becomes equal to

T ∼
(

30

π2g∗
Vinf

)1/4

, (50)

where Vinf is the inflationary energy scale. In order to prevent formation of monopoles after
inflation, this energy scale can not be too high (or reheating should be slow).

4.3 Black hole solution

A solution that could reduce the number of monopoles even after inflation, was presented by
Stojkovic and Freese [19]. The mechanism relies on capture of the monopoles by black holes.
The evolution equation for the monopole density now obtains an additional contribution

dnmon

dt
= −An2mon − nbhσgvmnmon − 3Hnmon , (51)

where nbh is the number density of black holes, σg the capture cross section and vm the
monopole velocity. The quantity nbhσgvm is estimated as

nbhσgvm = fβ2bmmon , (52)
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where f < 1 is the fraction of the energy density in black holes and β < 1 parameterizes the
mass of the black hole (larger β corresponds to larger mass). Under the assumption that
the black hole capture rate persists until low temperatures, the solution for the monopole
density becomes

nmon(t)

s
=
nmon(t)

s

∣∣∣∣
in

e−0.1fβ2(t−tin)/tP . (53)

After estimating f and β, the authors conclude that black holes with a mass of Mbh < 109gm
can solve the monopole problem, without violating any observational constraints.
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