Gil Badel, EPFL

- 28 years old
- Swiss
- Studied at EPFL, Lausanne, Switzerland
- Now 4th (final) year PhD student in the Laboratory of Theoretical Particle Physics, EPFL
- Supervisor : Riccardo Rattazzi
- Speak French, English, some German
- Hobbies : reading, bouldering, volunteering in local associations

Large charge operators in CFTs [1909.01269, 1911.08505]

Consider the following theory at the Wilson-Fisher fixed point, in $4-\varepsilon$ euclidean dimensions.

$$
\begin{equation*}
\mathcal{L}=\partial \bar{\phi} \partial \phi+\frac{\lambda}{4}(\bar{\phi} \phi)^{2} \tag{1}
\end{equation*}
$$

Say you would like to compute the anomalous dimension of ϕ^{n} operator in $U(1)$-invariant theory.

Large charge operators in CFTs [1909.01269, 1911.08505]

Consider the following theory at the Wilson-Fisher fixed point, in $4-\varepsilon$ euclidean dimensions.

$$
\begin{equation*}
\mathcal{L}=\partial \bar{\phi} \partial \phi+\frac{\lambda}{4}(\bar{\phi} \phi)^{2} \tag{1}
\end{equation*}
$$

Say you would like to compute the anomalous dimension of ϕ^{n} operator in $U(1)$-invariant theory.

Large charge operators in CFTs [1909.01269, 1911.08505]

Consider the following theory at the Wilson-Fisher fixed point, in $4-\varepsilon$ euclidean dimensions.

$$
\begin{equation*}
\mathcal{L}=\partial \bar{\phi} \partial \phi+\frac{\lambda}{4}(\bar{\phi} \phi)^{2} \tag{2}
\end{equation*}
$$

Say you would like to compute the anomalous dimension of ϕ^{n} operator in $U(1)$-invariant theory.
"Naive" Feynman diagrams computation :

$$
\begin{equation*}
\gamma_{\phi^{n}}=n\left[\frac{\lambda}{16 \pi^{2}} \frac{(n-1)}{2}-\left(\frac{\lambda}{16 \pi^{2}}\right)^{2} \frac{\left(2 n^{2}-2 n-1\right)}{4}\right] \tag{3}
\end{equation*}
$$

Large charge operators in CFTs [1909.01269, 1911.08505]

Consider the following theory at the Wilson-Fisher fixed point, in $4-\varepsilon$ euclidean dimensions.

$$
\begin{equation*}
\mathcal{L}=\partial \bar{\phi} \partial \phi+\frac{\lambda}{4}(\bar{\phi} \phi)^{2} \tag{2}
\end{equation*}
$$

Say you would like to compute the anomalous dimension of ϕ^{n} operator in $U(1)$-invariant theory.
"Naive" Feynman diagrams computation :

$$
\begin{equation*}
\gamma_{\phi^{n}}=n\left[\frac{\lambda}{16 \pi^{2}} \frac{(n-1)}{2}-\left(\frac{\lambda}{16 \pi^{2}}\right)^{2} \frac{\left(2 n^{2}-2 n-1\right)}{4}\right] \tag{3}
\end{equation*}
$$

Perturbation theory breaks down at $\lambda n \gg 1$!

Semiclassical Expansion

$\lambda \rightarrow 0, n$ finite, $\lambda n \ll 1$

- quantize fluctuations around the vacuum $\phi(x)=0+\delta \phi(x)$.
- $\gamma_{\phi^{n}}=n\left[\frac{\lambda}{16 \pi^{2}} \frac{(n-1)}{2}-\left(\frac{\lambda}{16 \pi^{2}}\right)^{2} \frac{\left(2 n^{2}-2 n-1\right)}{4}\right]$
$\lambda \rightarrow 0, n \rightarrow \infty, \lambda n$ finite
- quantize fluctuations around a non-trivial saddle $\phi(x)=\phi_{\mathrm{cl} .}(\boldsymbol{x})+\delta \phi(x)$.

$$
\begin{equation*}
\gamma_{\phi^{n}}=n \sum_{\ell=0}^{\infty} \lambda^{\ell} P_{\ell}(n)=n \sum_{\kappa=0} \lambda^{\kappa} F_{\kappa}(\lambda n) \tag{4}
\end{equation*}
$$

[Backup] Semiclassical expansion

Compute dimension from 2-point function

$$
\begin{equation*}
\left\langle\bar{\phi}^{n}\left(x_{f}\right) \phi^{n}\left(x_{i}\right)\right\rangle=\frac{1}{\left|x_{f}-x_{i}\right|^{2 \Delta_{\phi^{n}}}} \tag{5}
\end{equation*}
$$

The Path Integral can be rewritten as

$$
\begin{aligned}
\left\langle\bar{\phi}^{n}\left(x_{f}\right) \phi^{n}\left(x_{i}\right)\right\rangle & \sim \int \mathcal{D} \bar{\phi} \mathcal{D} \phi \bar{\phi}^{n}\left(x_{f}\right) \phi^{n}\left(x_{i}\right) e^{-\int \mathrm{d}^{d} x\left(\partial \bar{\phi} \partial \phi+\frac{\lambda}{4}(\bar{\phi} \phi)^{2}\right)} \\
& \sim \int \mathcal{D} \bar{\phi} \mathcal{D} \phi e^{-\int \mathrm{d}^{d} x\left(\partial \bar{\phi} \partial \phi+\frac{\lambda}{4}(\bar{\phi} \phi)^{2}\right)+n\left(\ln \bar{\phi}\left(x_{f}\right)-\ln \phi\left(x_{i}\right)\right)} \\
& \sim \int \mathcal{D} \bar{\phi} \mathcal{D} \phi e^{-\frac{1}{\lambda}\left[\int \mathrm{~d}^{d} x\left(\partial \bar{\phi} \partial \phi+\frac{1}{4}(\bar{\phi} \phi)^{2}\right)+\lambda n\left(\ln \bar{\phi}\left(x_{f}\right)-\ln \phi\left(x_{i}\right)\right)\right]}
\end{aligned}
$$

where in the last line we redefined the fields $\phi \rightarrow \frac{1}{\sqrt{\lambda}} \phi$.

