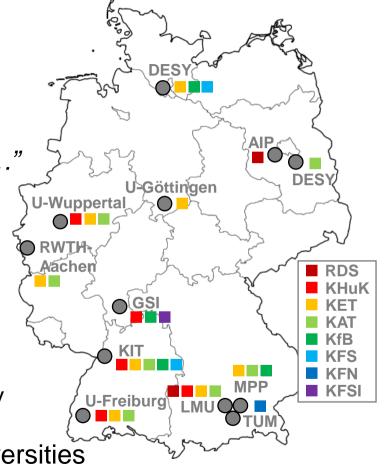
Computing Resources for 8 ErUM Communities

Achim Streit (KIT) - Chair DIG-UM Ressource Provider Board

Talk originally prepared and given at DIG-UM Celebration & Kick-Off Community Meeting on 20.1.2022, https://indico.desy.de/event/32315/


Resource Provider Board

• "...is the board representing the institutions providing computing resources for the ErUM research area. Initially, this includes...

■ 10 ErUM computing centers, namely:

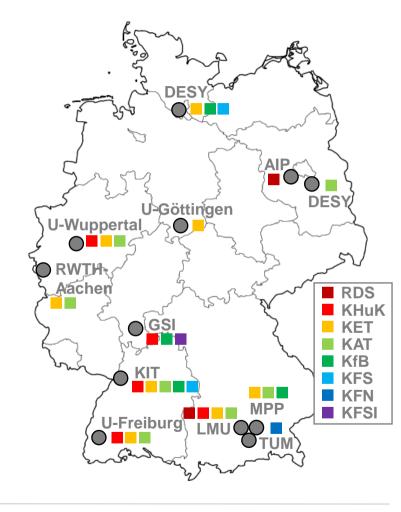
- 3 Helmholtz institutions (DESY, GSI, KIT)
- 1 Leibniz institute (AIP)
- 5 Universities (AC, FR, GÖ, M, W)
- 1 Max Planck Institute (MPP)
- In total > 280.000 CPU-cores, > 700 GPUs,
 - > 260 PB disk and > 100 PB tape storage
- Operated 24/7 at highest performance, quality and reliability – and mostly pledged

In addition, local compute resources at universities

HPCs, Commercial Clouds, GPUs

	Technical	Organizational
HPCs	 Largely comparable CPU-hardware In principle binary compatible, but adaptations needed Software stacks different 	 Resource usage time-limited and not guaranteed → not "pledge-able" Totally different model of operation and compute time allocation Opportunistic usage possible
Commercial Clouds	 Largely comparable CPU-hardware Storage/CPU bandwidth and WAN bandwidth are also a challenge 	 Pay-per-use → money is leaving the science system and typically Germany Large-scale regular usage typically at high costs → mostly suitable for burst usage Sustainability and sovereignty critical
GPUs	 Completely different architecture compared to standard CPUs → different programming paradigm 	 Easy integration in ErUM computing centers Also available in HPCs and Com. Clouds

Quo vadis?


- Future usage of HPCs (e.g., NHR) for compute-intensive tasks
- Discussion on HPC's model of operation and compute time allocation
- Co-location of data and compute at ErUM computing centers for dataintensive computing and data handling of large-scale experiments
- Addressing the full data life cycle (FAIR principles) up to data archival enabling a data ecosystem for ErUM

- Research Software Engineering for efficient HPC & GPU usage
- Strengthen ErUM computing centers for secured data sovereignty

ErUM computing centers
=

indispensable research infrastructure to transform data into knowledge

