### Potential for AutoML from PUNCH

Gregor Kasieczka (gregor.kasieczka@uni-hamburg.de) Twitter: @GregorKasieczka NFDI Workshop, 5.4.2022

#### **CLUSTER OF EXCELLENCE**

#### QUANTUM UNIVERSE





Emmv

Noether-



Bundesministerium für Bildung und Forschung

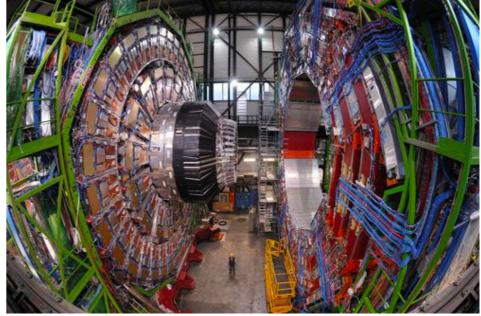
Partnership of Universität Hamburg and DESY

### Motivation

#### **Common themes:**

- Large volumes of experimental and simulation data
- Interesting structures

   (symmetries, causality, compositeness)
- Underlying mechanistic model...
- ...but complex noise (e.g. detector response)
- High-quality labelled synthetic training data
- Well understood uncertainties of predictions

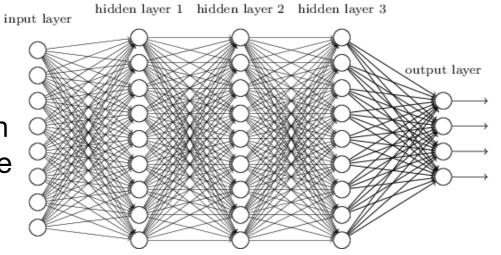


**CMS experiment at CERN** 40 million proton-proton collisions / second ~1 PB/s non-zero-suppressed raw input data ~1 GB/s stored

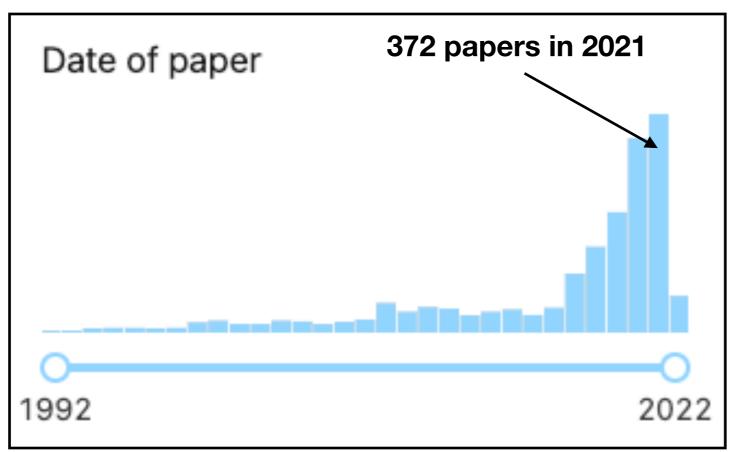


SKA radio telescope Operation from 2027 onwards Expect ~I EB/day raw input data

**Note**: Many machine learning developments in physics center around the use of (deep) neural networks



### Activity



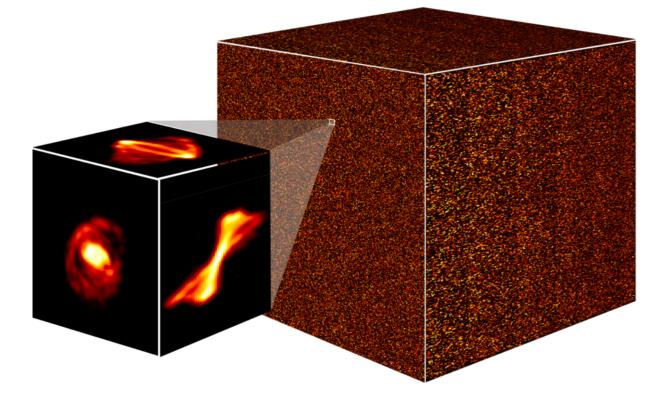
#### **Inspire Search:**

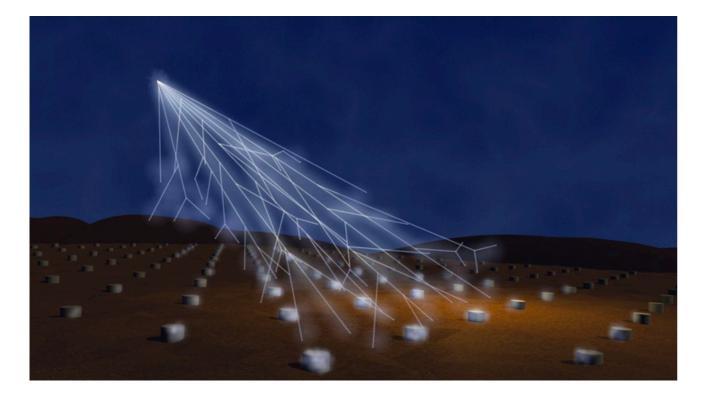
("machine learning" or "deep learning" or neural) and (hep-ex or hep-ph or hep-th)

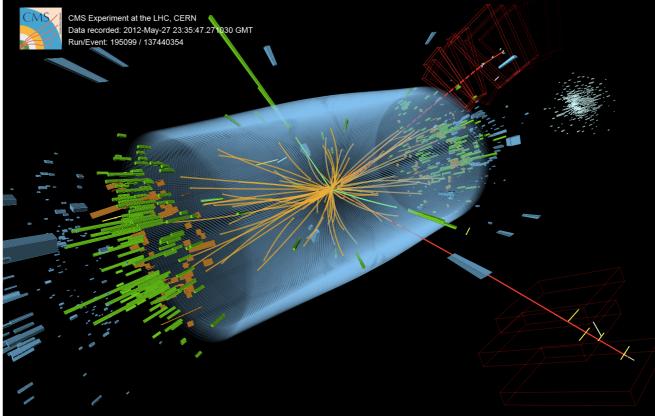
Very active and wide-spread adaptation of modern machine learning in PUNCH domains.

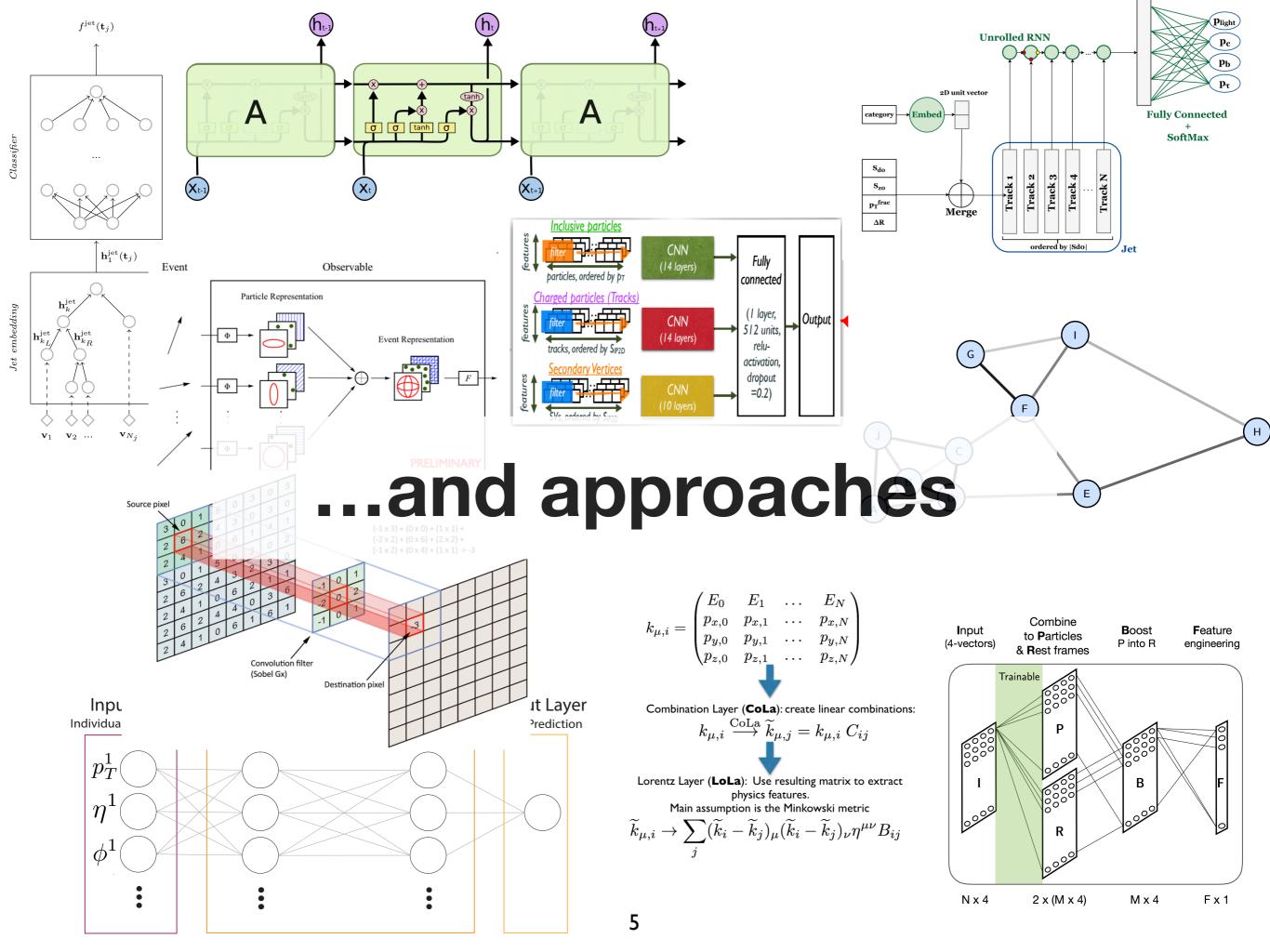
See e.g. arxiv:2112.03769 for a short review.

### **Diversity of data types...**



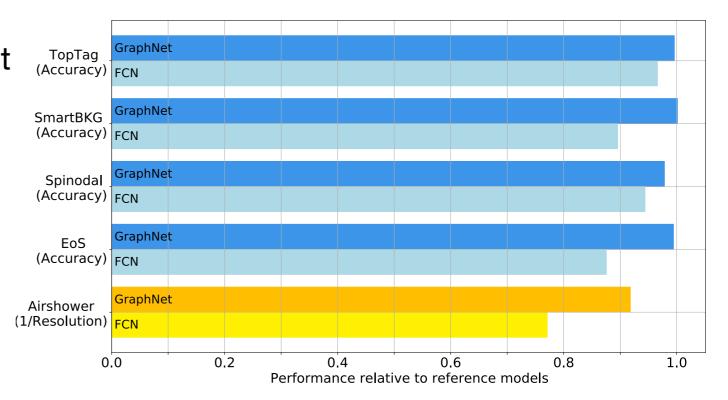






## Finding common ground

- Built collection of datasets from different scientific domains (particle, hadron&nuclei, astro-particle) (Open Data, of course)
  - Focus on supervised learning tasks (classification/regression for simplicity)
  - (Open for more additions)
- Developed graph-based model achieving state-of-the-art performance on all datasets out-of-the-box

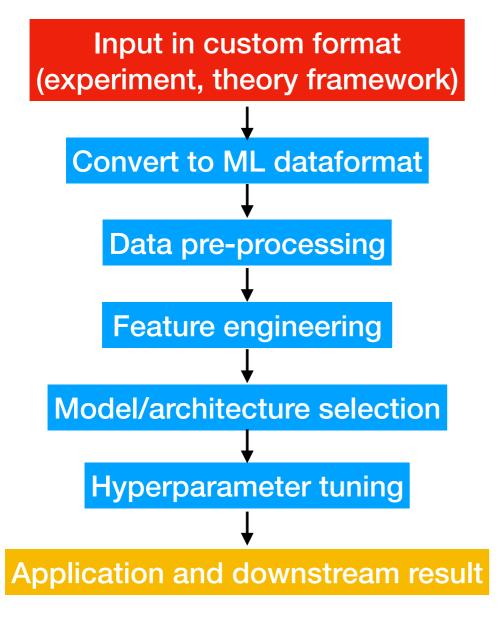


### See arXiv:2107.00656 and <a href="https://github.com/erum-data-idt/pd4ml">https://github.com/erum-data-idt/pd4ml</a>

|                       | Task   | Examples<br>(train/test/validation) | Structure    | Dimension                              |
|-----------------------|--------|-------------------------------------|--------------|----------------------------------------|
| Top Tagging Landscape | Class. | 1.2M/400k/400k                      | Four vectors | 200 particles, 4 features/particle     |
| Smart Backgrounds     | Class. | 157k/39k/84k                        | Decay Graph  | 100 particles, 9 features/particle     |
| Spinodal or Not       | Class. | 16.3 k/4 k/8.7 k                    | 2D Histogram | 20x20 histogram of pion spectra        |
| EoS                   | Class. | 121 k/25 k/54 k                     | 2D Histogram | 24x24 histogram of pion spectra        |
| Air Showers           | Regr.  | 56k/30k/14k                         | 81 1D Traces | 81  stations, 80  signal bins + timing |

### Vision going forward

#### **Machine Learning pipeline:**

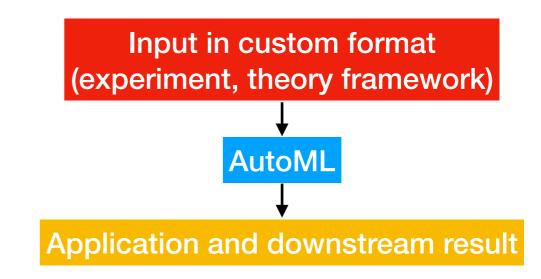


- Large part of research time spent on these tasks
- Similar for many of our applications
- Automate these: AutoML
- (the goal is not to produce the best model for each scenario but provide a reliable baseline with minimal user effort)

# Some thoughts:

- AutoML is a (much) bigger research effort outside of our domain
- Do not compete with, find a way to build a fully automated toolchain
- Make sure it works for all our examples (limit to supervised tasks)
- Build our domain expertise into the automated model selection
- Possibility to extend to data from areas (e.h. consortia present today?)

#### Goal:



### **Concrete steps**

#### Data

- Can work with PD4ML collection as a start; integrate with PUNCH science data portal
- Algorithms / Meta-learning and automated Deep Learning
  - Initially focus on hyperparameter search, in particular:
    - <u>SMAC3</u>: Bayesian optimization to probe configuration space
    - <u>Hyperband</u>: preempt computations whose configurations are wasteful
- Infrastructure / Technical aspects
  - Deliver as a wrapper of a workflow to maximize applicability
  - Initial prototype based on <u>https://docs.ray.io/en/latest/tune/index.html</u> or methods from the <u>Freiburg-Hannover group</u>
  - Targeted features:
    - Workflow and resource definitions directly in Python
    - Distributed training and hyperparameter optimization
    - Use cross-platform compute infrastructure (e.g., Kubernetes, Slurm Workload Manager).

#### Many thanks to Joeri Hermans!

### Example use-case: Automated Simulation-Based (Bayesian) Inference

- User provides:
  - A prior p(9)
  - A simulation model that accepts
     9 ~ p(9) to produce x ~ p(x | 9)
  - A set of observations (optional)
- User gets:
  - An ensemble of trained posterior estimators (in <u>ONNX</u>)
  - Statistical diagnostics (expected coverage for all confidence levels, <u>SBC</u>)
  - A pre-generated Jupyter notebook with all results (including constraints on 9)





|                                                    |                         |                     |                     | 2.0           | 1 (in ())                             | - posserio | •  |
|----------------------------------------------------|-------------------------|---------------------|---------------------|---------------|---------------------------------------|------------|----|
|                                                    | <sup>7.0</sup><br>6.5 8 |                     |                     |               |                                       |            |    |
| Architecture                                       | 68% CR                  | 95% CR              | 99.7% CR            | 6.0           | $\left  \right  \left  \right\rangle$ |            |    |
| $\hat{r}(x \vartheta)$ with $\vartheta \triangleq$ | $(m_{\text{WDM}})$      |                     |                     | 5 5.5         | A CLAN                                |            |    |
| MLP                                                | $0.704_{\pm 0.004}$     | $0.972_{\pm 0.002}$ | $0.999_{\pm 0.000}$ | .표<br>활 5.0   | N. C. C.                              | 4          |    |
| MLP-BN                                             | $0.706_{\pm 0.003}$     | $0.970_{\pm 0.001}$ | $0.999_{\pm 0.000}$ | u S           | /                                     | De.        |    |
| resnet-18                                          | $0.687_{\pm 0.004}$     | $0.955 \pm 0.002$   | $0.998 \pm 0.000$   | Stream<br>4.5 | / /                                   | - CES      |    |
| resnet-18-bn                                       | 0.693 ±0.004            | $0.966_{\pm 0.002}$ | $0.999_{\pm 0.000}$ | 4.0 8         |                                       |            |    |
| resnet-50                                          | $0.689_{\pm 0.006}$     | $0.967_{\pm 0.001}$ | $0.998 \pm 0.000$   | 3.5           | 66.7%                                 |            |    |
| resnet-50-bn                                       | $0.698_{\pm 0.004}$     | $0.969_{\pm 0.001}$ | $0.999_{\pm 0.000}$ | 3.0           |                                       |            |    |
|                                                    |                         |                     |                     | 3.0           | 10 20                                 | 30         | 40 |
|                                                    |                         |                     |                     |               | 7                                     | 22 WDM     |    |

# Closing

- Wide and growing use of machine learning in fundamental sciences
- Large potential from automating parts of this workflow
- Interesting challenges on the algorithmic and technical side
- Will carry out these developments on the PUNCH side, very open towards other application domains!