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Common themes: 

• Large volumes of experimental and simulation data


• Interesting structures  
(symmetries, causality, compositeness)


• Underlying mechanistic model…


• …but complex noise (e.g. detector response)


• High-quality labelled synthetic training data


• Well understood uncertainties of predictions


CMS experiment at CERN 
40 million proton-proton collisions / second 
~1 PB/s non-zero-suppressed raw input data  
~1 GB/s stored 

Motivation

SKA radio telescope 
Operation from 2027 onwards 
Expect ~1 EB/day raw input data

Note: Many machine 
learning developments  in 
physics center around the 
use of (deep) neural 
networks
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Activity

Inspire Search: 

("machine learning" or "deep learning" or 
neural) and (hep-ex or hep-ph or hep-th)

372 papers in 2021

Very active and wide-spread adaptation 
of modern machine learning in PUNCH 
domains. 

See e.g. arxiv:2112.03769 for a short review. 

https://arxiv.org/abs/2112.03769
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Diversity of data types…



the impact of the size of the test set on the quoted results, the performance metrics of the

best performing network were evaluated on 15, 4-batch subsamples of the test set. This

evaluation was performed only for the best performing network in the LHC 2016 pileup

scenario due to computational constraints.

3 Network Architecture

The networks studied here were implemented using the Keras suite [46] with the Theano

[47] backend. The input layer of the network consists of a vector of jet constituent pT, ⌘

and � coordinates. The network depth and number of nodes per layer were tuned manually,

exploring a space between 4-6 layers and 40-1000 nodes per layer. ReLu activation [48]

was used for the hidden layers while a sigmoid is used for the output node. The network

was trained with the Adam optimiser [49] for a maximum of 40 epochs. Early stopping

with a patience parameter of 5 epochs on the loss in the validation set was used. The model

used for evaluating the performance on the test set is the model with the best performance

(lowest binary cross-entropy loss) on the validation set. This method prevents overtraining

by freezing the model once performance on the validation set begins to decrease. The final

chosen network architecture consists of 4 hidden layers, with 300, 102, 12 and 6 nodes per

layer. Figure 2 shows a schematic of the overall network architecture used in this study.
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Figure 2. Schematic of overall network architecture used.

3.1 Preprocessing

The key idea behind preprocessing the jets is that, by incorporating domain specific knowl-

edge about the jet physics, the dimensionality of the problem can be reduced. The prepro-

cessing steps were inspired by previous papers [22, 23, 25, 28] and determined through a

series of studies. Jets are scaled, translated, rotated and flipped.

First, the pT of all jet constituents is scaled by 1/1700 to ensure that the majority of jet

constituents have a pT approximately between zero and one. This ensures that the value of

the input nodes corresponding to the pT of the jet constituents are roughly within the same

order of magnitude as the input nodes corresponding to the ⌘ and � of the constituents.
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FIG. 1. QCD-motivated recursive jet embedding for classifi-
cation. For each individual jet, the embedding hjet

1 (tj) is com-
puted recursively from the root node down to the outer nodes
of the binary tree tj . The resulting embedding is chained to
a subsequent classifier, as illustrated in the top part of the
figure. The topology of the network in the bottom part is
distinct for each jet and is determined by a sequential recom-
bination jet algorithm (e.g., kt clustering).

B. Full events

We now embed entire events e of variable size by feed-
ing the embeddings of their individual jets to an event-
level sequence-based recurrent neural network.

As an illustrative example, we consider here a gated re-
current unit [21] (GRU) operating on the pT ordered se-
quence of pairs (v(tj),h

jet
1 (tj)), for j = 1, . . . ,M , where

v(tj) is the unprocessed 4-momentum of the jet tj and

hjet
1 (tj) is its embedding. The final output hevent

M
(e) (see

Appendix B for details) of the GRU is chained to a subse-
quent classifier to solve an event-level classification task.
Again, all parameters (i.e., of the inner jet embedding
function, of the GRU, and of the classifier) are learned
jointly using backpropagation through structure [9] to
minimize the loss Levent. Figure 2 provides a schematic
of the full classification model. In summary, combining
two levels of recurrence provides a QCD-motivated event-
level embedding that e↵ectively operates at the hadron-
level for all the particles in the event.

In addition and for the purpose of comparison, we
also consider the simpler baselines where i) only the 4-
momenta v(tj) of the jets are given as input to the GRU,
without augmentation with their embeddings, and ii) the
4-momenta vi of the constituents of the event are all di-
rectly given as input to the GRU, without grouping them
into jets or providing the jet embeddings.

IV. DATA, PREPROCESSING AND
EXPERIMENTAL SETUP

In order to focus attention on the impact of the
network architectures and the projection of input 4-
momenta into images, we consider the same boosted W
tagging example as used in Refs. [1, 2, 4, 6]. The signal
(y = 1) corresponds to a hadronically decaying W boson
with 200 < pT < 500 GeV, while the background (y = 0)
corresponds to a QCD jet with the same range of pT .
We are grateful to the authors of Ref. [6] for shar-

ing the data used in their studies. We obtained both
the full-event records from their PYTHIA benchmark sam-
ples, including both the particle-level data and the tow-
ers from the DELPHES detector simulation. In addition,
we obtained the fully processed jet images of 25⇥25 pix-
els, which include the initial R = 1 anti-kt jet clustering
and subsequent trimming, translation, pixelisation, rota-
tion, reflection, cropping, and normalization preprocess-
ing stages detailed in Ref. [2, 6].

Our training data was collected by sampling from the
original data a total of 100,000 signal and background jets
with equal prior. The testing data was assembled sim-
ilarly by sampling 100,000 signal and background jets,
without overlap with the training data. For direct com-
parison with Ref. [6], performance is evaluated at test
time within the restricted window of 250 < pT < 300
and 50  m  110, where the signal and background jets
are re-weighted to produce flat pT distributions. Results
are reported in terms of the area under the ROC curve
(ROC AUC) and of background rejection (i.e., 1/FPR) at
50% signal e�ciency (R✏=50%). Average scores reported
include uncertainty estimates that come from training 30
models with distinct initial random seeds. About 2% of
the models had technical problems during training (e.g.,
due to numerical errors), so we applied a simple algo-
rithm to ensure robustness: we discarded models whose
R✏=50% was outside of 3 standard deviations of the mean,
where the mean and standard deviation were estimated
excluding the five best and worst performing models.

For our jet-level experiments we consider as input to
the classifiers the 4-momenta vi from both the particle-
level data and the DELPHES towers. We also compare the
performance with and without the projection of those
4-momenta into images. While the image data already
included the full pre-processing steps, when considering
particle-level and tower inputs we performed the initial
R = 1 anti-kt jet clustering to identify the constituents of
the highest pT jet t1 of each event, and then performed
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Finding common ground
• Built collection of datasets from different 

scientific domains (particle, 
hadron&nuclei, astro-particle) (Open 
Data, of course)


• Focus on supervised learning tasks 
(classification/regression for 
simplicity)


• (Open for more additions)


• Developed graph-based model 
achieving state-of-the-art performance 
on all datasets out-of-the-box

4 Lisa Benato et al.

Table 1: Overview of the provided datasets.

Task Examples Structure Dimension
(train/test/validation)

Top Tagging Landscape Class. 1.2M/400k/400k Four vectors 200 particles, 4 features/particle
Smart Backgrounds Class. 157k/39k/84k Decay Graph 100 particles, 9 features/particle
Spinodal or Not Class. 16.3k/4k/8.7k 2D Histogram 20x20 histogram of pion spectra
EoS Class. 121k/25k/54k 2D Histogram 24x24 histogram of pion spectra
Air Showers Regr. 56k/30k/14k 81 1D Traces 81 stations, 80 signal bins + timing

2.3 Spinodal or Not

The spinodal dataset [58] is a simulated dataset, cre-
ated to identify the e↵ects of a non-equilibrium decon-
finement phase transition in relativistic nuclear colli-
sions. The underlying physical question is to under-
stand the non-perturbative interactions of the strong
interaction in the high baryon density regime. These
questions are closely related to the understanding of
the deconfinement mechanism and consequently the dy-
namical generation of mass in Quantum Chromo Dy-
namics (QCD). To uncover the properties of dense and
hot nuclear matter, the Compressed Baryonic Matter
(CBM) [59,60] experiment is under construction at the
FAIR (Facility for Anti-proton and Ion Research) at
GSI Darmstadt. At FAIR, heavy nuclei (mostly lead
and/or uranium) are accelerated to beam energies of
several GeV per nucleon and brought to collision with
a similar target at the CBM experiment. In this way,
the nuclear matter is simultaneously heated and com-
pressed, and since large nuclei are used, for a very short
time, an equilibrated system of QCD matter at several
times the nuclear saturation density and temperatures
of up to 100 MeV is created. The dynamics that govern
this system are determined by the strong interaction,
i.e. QCD. Since the dynamic many–body problem of
QCD cannot be solved explicitly nor numerically, our
understanding of the matter created is based on inter-
pretations of the collected data. This interpretation is
done by comparing sophisticated model simulations, ei-
ther based on relativistic fluid dynamics or microscopic
transport simulations, with experimental observations.
The presented dataset is the result of such a model sim-
ulation, based on a fluid dynamical simulation of heavy
ion collisions in the presence of a first-order deconfine-
ment phase transition [61]. In particular, the dataset
was created using two distinct scenarios, one where
spinodal decomposition occurs and one where it does
not. Spinodal decomposition is a well-known e↵ect that
describes the dynamics of phase separation and leads
to the exponential growth of density fluctuations. It is
now of particular interest how these density fluctua-
tions influence the observable final particle spectra as
measured by the CBM experiment. In addition, since

even the theoretical background of these fluctuations
in the fast-expanding and small collision systems is not
well understood, it is even of interest to understand
whether all events will show such signals or they only
occur on rare occasions. Thus, the application of ma-
chine learning methods to possibly uncover the e↵ects of
the QCD phase transition measured momentum spectra
is of great interest. The task for this e↵ort is to identify
those events which have undergone spinodal decompo-
sition. In addition, for the physical interpretation, it
is also important to see what a characteristic spinodal
event looks like compared to a non-spinodal event. Fi-
nally, it is important to achieve high accuracy to see
whether all events, simulated as spinodal events, also
can be identified as such or if not every event shows
the relevant characteristics. More information on the
physics background and scientific motivation behind
this dataset can be found in Ref. [28, 62]. The data in-
cluded is a coarse-grained — and hence more di�cult
— version of these data. To create the spinodal classi-
fication dataset, 27,000 central collision events of lead
on lead are generated at a (typical FAIR/GSI) beam
energy of Elab = 3.5A GeV, for each scenario: spinodal
or not. From each event an ’image’ is then generated,
containing information on the net baryon density distri-
bution in the transverse spatial X � Y plane. This cor-
responds then to a 20-by-20 pixel histogram. We renor-
malized the pictures by their maximum bin value for
each event separately, to avoid possible artifacts from
one class having a larger density. The histograms are
then flattened to a 400-column array-list of events.

2.4 EoS

The EoS dataset is simulated with relativistic hydrody-
namics including afterburner hadronic cascade for de-
scribing high energy heavy ion collisions. One of the
primary motivations for these collision experiments is
to understand the QCD phase structure, to which large
international e↵orts have been devoted. The current
beam energy scan project at RHIC (BNL) and the forth-
coming program at FAIR (GSI) particularly aim at
searching for signals and location of the critical end
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Fig. 3: Performance of the GraphNets and the FCNs relative to the reference models for the di↵erent datasets.

mization on user-provided datasets without further man-
ual intervention possible. Such a service could greatly
reduce the turn-around and development time for many
standard applications of machine learning in our field.
Of course, exotic, novel, or otherwise unique tasks will
still require dedicated e↵orts. Thinking further, one could
also consider using similarities in the structure of data
representing physical measurements and further improve
the performance via transfer learning across datasets.
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A Reference Models

In the following, a reference model is provided for each dataset.
These reference models represent an algorithm specifically de-
signed and optimized for the problem at hand. They serve
as a benchmark to judge the performance of the proposed
dataset-independent algorithms.

A.1 Top Tagging Landscape

The ParticleNet [77] algorithm is used as reference for the
Top Tagging Landscape dataset. This architecture was one
of the best models in a comparison study performed earlier
on this dataset [6]. The graph convolutional network is con-
structed by viewing the input data as point clouds, i.e. each
jet is considered an unordered set of particles. To build these
point clouds, the particles in each jet are ordered by trans-
verse momentum and zero-padded to up to 100 particles per
jet. From the particles 4-momenta seven input features for
the network are computed: the logarithm of the transverse
energy (log(pT)), the logarithm of the energy (log(E)), the
relative pseudorapidity (�⌘), the relative �� angle, the loga-
rithm of the particle’s pT relative to the jet pT (log( pT

pT(jet)
)),

the logarithm of the particle’s energy relative to the jet energy
(log E

E(jet)
), and the angular sepeartion between the particle

and the jet axis (�R =
p

(�⌘)2 + (��)2). The relative an-
gles are calculated with respect to the jet axis. Based on these
inputs, a graph is built for every jet. The edges of this graph
are found by a k nearest neighbor search of the k = 7 closest
particles. The architecture itself is build of three EdgeConv
layers [78], followed by a global pooling operation over all the
particles to preserve permutation invariance, followed by two
fully-connected layers.

See arXiv:2107.00656 and 
https://github.com/erum-data-idt/pd4ml 

https://github.com/erum-data-idt/pd4ml
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Vision going forward

• Large part of research time spent on these 
tasks


• Similar for many of our applications


• Automate these: AutoML


• (the goal is not to produce the best model 
for each scenario but provide a  
reliable baseline with minimal user effort)

Input in custom format 
(experiment, theory framework)

Convert to ML dataformat

Data pre-processing

Feature engineering 

Model/architecture selection

Hyperparameter tuning

Application and downstream result

Machine Learning pipeline:



Some thoughts:
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Input in custom format 
(experiment, theory framework)

AutoML

Application and downstream result

Goal:

• AutoML is a (much) bigger research effort 
outside of our domain


• Do not compete with, find a way to build a 
fully automated toolchain


• Make sure it works for all our examples  
(limit to supervised tasks)


• Build our domain expertise into the 
automated model selection


• Possibility to extend to data from areas 
(e.h. consortia present today?)




Concrete steps
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• Data 

• Can work with PD4ML collection as a start; integrate with PUNCH science data portal


• Algorithms / Meta-learning and automated Deep Learning


• Initially focus on hyperparameter search, in particular:


• SMAC3: Bayesian optimization to probe configuration space


• Hyperband: preempt computations whose configurations are wasteful


• Infrastructure / Technical aspects


• Deliver as a wrapper of a workflow to maximize applicability


• Initial prototype based on https://docs.ray.io/en/latest/tune/index.html or methods from the 
Freiburg-Hannover group


• Targeted features:


• Workflow and resource definitions directly in Python


• Distributed training and hyperparameter optimization


• Use cross-platform compute infrastructure (e.g., Kubernetes, Slurm Workload Manager).

Many thanks to Joeri Hermans! 

https://www.jmlr.org/papers/volume23/21-0888/21-0888.pdf
https://web.eecs.umich.edu/~mosharaf/Readings/HyperBand.pdf
http://www.apple.com/uk
https://github.com/automl


Example use-case: Automated 
Simulation-Based (Bayesian) Inference

10

• User provides: 


• A prior p(ϑ)


• A simulation model that accepts 
 ϑ ~ p(ϑ) to produce x ~ p(x | ϑ)


• A set of observations (optional) 

• User gets:


• An ensemble of trained posterior estimators (in ONNX)


• Statistical diagnostics (expected coverage for all confidence levels, SBC)


• A pre-generated Jupyter notebook with all results (including constraints on ϑ)

Many thanks to Joeri Hermans! 

https://onnx.ai
https://arxiv.org/abs/1804.06788


Closing
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• Wide and growing use of machine learning in fundamental sciences 

• Large potential from automating parts of this workflow 

• Interesting challenges on the algorithmic and technical side


• Will carry out these developments on the PUNCH side, very open 
towards other application domains!

Thank you! 


