
www.casus.science

From HPC to the Edge 

Alpaka, LLAMA and other animals

Michael Bussmann

- NFDI



Challenges in parallel programming today

2

High data rates, complex algorithms, Sustainability

Throughput & Sustainability

• Memory bound: Throughput is decisive to use your hardware efficiently

• Development cycles: Hardware is changing every two years

• A zoo without a keeper: CPUs, GPUs, FPGAs, ARM, RISC-V

• Reproducibility & trust: Algorithms have to do the same regardless of Hardware



Challenges in parallel programming today

3

What it takes to use your hardware

How to use your hardware the best you can

• Data locality is key, so you need to express your data dependencies

• Data layout is (still) important, so you need to be able to change it

• Parallel efficiency = Express both data + task parallelism

• Do not write to disk if you can, stream your data



Data Locality: Know and express your data dependencies

REDGRAPES: Express your task parallelism by data dependencies

4

Data Dependencies Task Tree Scheduling Strategy



Data Locality: Know and express your data dependencies

REDGRAPES: Express your task parallelism by data dependencies

5



Data Layout: Layouts change, but code should not

LLAMA: Efficient data layouts without changing your code

6

User side Data Types Efficient LayoutMapping



Parallel Efficiency: Express parallelism across platforms

7

ALPAKA: Single-source programming for CPUs, GPUs & FPGAs

…



ALPAKA: Single-source programming for CPUs, GPUs & FPGAs

8

ALPAKA: Close to native performance



ALPAKA: Single-source programming for CPUs, GPUs & FPGAs

9

Close to native performance



I have a C++ CUDA code and am too lazy to port it

// CUDA kernel

__global__ void kernel(/* Args */)

{

/* CUDA code */

}

// Kernel launch

dim3 gridSize(42, 1, 1);

dim3 blockSize(256, 1, 1);

kernel<<<gridSize, blockSize>>>(/* Args */);

CUPLA: Making portable ALPAKA code without effort

// include CUPLA-to-CUDA header

#include <cuda_to_cupla.hpp>

// replace kernel definition with functor definition

struct Kernel {

template<typename TAcc>

ALPAKA_FN_ACC

void operator()(TAcc const& acc,

/* Args */) const

{

/* CUDA code */

}

};

// Kernel launch

dim3 gridSize(42, 1, 1);

dim3 blockSize(256, 1, 1);

CUPLA_KERNEL(Kernel)(gridSize, blockSize)(/* Args */);

Native CUDA Code Portable CUPLA Code

10



I/O is seriously limited

OPENPMD: F.A.I.R. I/O and streaming for the Exascale era

11

2.5 TiB/s



OPENPMD: F.A.I.R. I/O and streaming for the Exascale era

OPENPMD: Streaming workflows for Analysis, Simulation & AI

12

A.I.



Tools for the NFDI Data Challenge from HPC to Edge

Open, F.A.I.R. & fast

13


