
HPC@Jülich as opportunistic 
resource for CMS

Integration prototyping

T. Madlener, C. Wissing, M. Giffels

08.03.2022



Overview / Introduction

● Final goal: Integrate FZJ resources into the CMS pool
○ Ideally transparently, e.g. via T1@KIT

● Current goal: Have a running prototype on the ITB pool
● HPC resources usually quite different from the “usual grid resources”

○ Networking much more restricted
○ Available software differs, e.g. no CVMFS by default

● Situation on JURECA
○ CVMFS setup to get CMS software
○ Network (proxy) setup
○ Launching manual glideins

● Cobald / Tardis setup
● Issues still to be resolved



JURECA @ FZJ

● Compute nodes with AMD EPYC 7742 (2x64 @ 2.25 GHz) with either 512 or 
1024 GB of RAM + potentially Nvidia A100 GPUs

○ JURECA hardware configuration 
○ Running on CPU only at the moment
○ Seems to be the resource with the least network restrictions

● Running Rocky Linux 8.5 (CentOS8)
○ Singularity 3.8.5 (without user namespaces)
○ Slurm batch system

● Associated to the cslnpp project (lead by Stefan Krieg)
○ Have 200k core hours more or less for ourselves on JURECA CPU nodes
○ Try to get a basic workflow to work and do some first tests

https://apps.fz-juelich.de/jsc/hps/jureca/configuration.html


Frontier squid setup

● Possible to run a squid proxy on the login node directly and connect to it from 
worker nodes ✅

○ For testing purposes only
○ Needs to be moved to a dedicated node or VM for production, but don’t expect too many 

problems with that
● Also using squid proxy as CVMFS http_proxy

○ Makes CVMFS setup on worker nodes slightly easier



CVMFS and container setup

● CVMFS is not mounted on JURECA
● Use cvmfsexec to mount it locally and then bind-mount it to /cvmfs/ in a 

singularity container ✅
● Image is cmssw/cc7:amd64 with some additional packages for our network 

setup (and debugging), Dockerfile
● Singularity on JURECA has user namespaces disabled

○ Not possible to nest containers
○ Not possible to use images from unpacked.cern.ch
○ Need dedicated glidein that allows to run CMS workflows without starting their own singularity 

container

https://github.com/cvmfs/cvmfsexec
https://gitlab.desy.de/thomas.madlener/cms-drp-jsc/-/blob/main/container/Dockerfile


JURECA networking setup

Login 
nodeLogin 

nodeLogin 
nodeLogin 

nodeLogin 
node

Worker 
nodeWorker 

nodeWorker 
nodeWorker 

nodeWorker 
nodeWorker 

nodeWorker 
nodeWorker 

nodeWorker 
nodeWorker 

node

● Worker nodes can only connect to Login nodes
● Login nodes have outbound connections

○ But only on ports 80 (http) and 443 (https)
○ We need other ports as well



Current proxy setup using proxychains

Reverse 
proxy 
@KIT

ssh

● ssh tunnel from worker node to login node

● Use proxychains to route all traffic through ssh tunnel and port 80 of login node to

● Reverse proxy @KIT running dante2 proxy on a VM with less strict firewall

proxychains setup

Worker 
node

Login 
node

proxychains

https://gitlab.desy.de/thomas.madlener/cms-drp-jsc/-/blob/main/proxychains/ssh_proxy


Putting everything into a batch job

● Mount cvmfs repositories via cvmfsexec
● Setup ssh tunnel from worker to login node
● Launch singularity container and bind-mount cvmfs repositories to /cvmfs

● Pre-load proxychains library
● Launch (manual) glidein
● Enjoy

“Setup” on worker node

Work that is done inside the 
container that is launched in the 
setup

● Enter the now running container

script

https://gitlab.desy.de/thomas.madlener/cms-drp-jsc/-/blob/main/scripts/run_glidein.sh


Cobald / Tardis setup

● In the end do not want to have to launch glidein batch jobs manually but 
delegate that to Cobal / Tardis

● Running on a VM @FZJ
○ Access to ITB schedd (vocms068)
○ Access to jureca login node

● Submission of batch jobs and monitoring of running glideins on JURECA via 
ssh

● Small hack of glidein startup scripts necessary to inject the TardisDroneUuid
● Successfully tested on a rather small scale✅

○ Submitting enough jobs to fill 1 node completely (64 jobs)

https://gitlab.desy.de/thomas.madlener/cms-drp-jsc/-/commit/32925fcde60451afe82724d73e28ce39b686a4d2


Workflow for testing

● Using a MC workflow for testing
○ Needs no additional input
○ Can be tuned quite easily to different runtimes
○ Also used, e.g. by CINECA for initial testing and debugging

● Submitted to ITB pool via crab
● Targeting FZJ glideins via GLIDEIN_Entry_Name ClassAd and extraJDL
● Storage of outputs at T2_DE_DESY

https://gitlab.desy.de/thomas.madlener/cms-drp-jsc/-/blob/main/test/crabConfig.py


Open issues

● Issues to be addressed for successful prototyping
○ Payloads sent to glideins lose connection to shadow on schedd

■ FZJ firewall seems to kill (idle?) outgoing connections (on port 80?)
■ Jobs run successfully, including stageout
■ Payloads cannot report status back to schedd and are “lost”

○ Scale tests of the whole setup with more job pressure (roughly 70k core hours still available)
● Issues to be addressed on a longer term scale (i.e. before production)

○ Test setup is using a personal grid certificate for glidein authentication with the ITB pool
○ Properly upstream the TardisDroneUuid injection code
○ Check with FZJ admins if some parts of the setup could be simplified with a bit of their help
○ Need a new glidein for being able to use customisable pilots that would potentially allow for an 

easier selection of jobs to run on FZJ
○ Migrate squid proxy to its own node or VM



Summary & Outlook

● Currently working on getting a prototype workflow to run on JURECA @FZJ
● Working setup for CVMFS access
● Need to work around some network restrictions

○ Proxychains based solution almost working
○ Need to figure out a way to avoid firewall timeouts

● Can run CMS MC generation workflow, including stageout
○ Reporting success back to pool not working due to network problems

● First tests with using Cobald / Tardis for automatic submission of glideins
● (Small) scale tests as soon as we have stable network setup
● repository with the necessary setup code 

https://gitlab.desy.de/thomas.madlener/cms-drp-jsc/-/tree/main/

