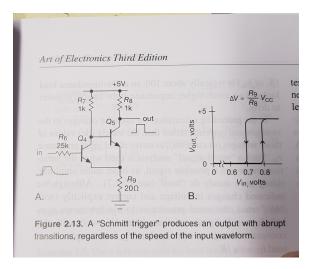
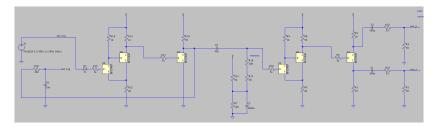
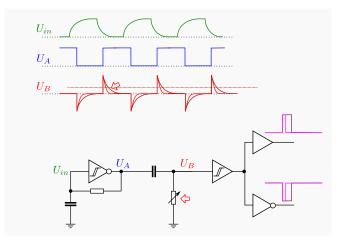
A Handheld Pulser with Realistic Detector Pulse Shape


Michael Wiebusch

GSI EEL - AESD


21.03.2022

• "Prelude" - The Battery Pulser

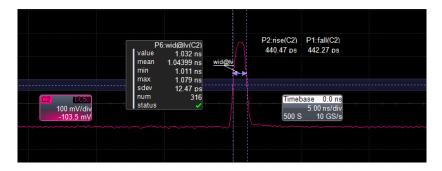

The Discovery

- From Paul Horowitz The Art of Electronics
- Only two transistors to build a Schmitt trigger?
 - \rightarrow I did not know that!

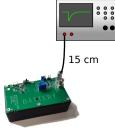
- ... It all started with fast transistors (BFU760, $f_T = 45 GHz$) and SPICE
- We had a lot of these transistors in stock for building discrete preamplifiers.

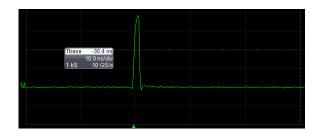
• (all with discrete transistors)

schmitt_pulser.raw			
450mV	V	(out_p)	
400mV-			
350mV-			
300mV-			
250mV-			
200mV-			
150mV-			
100mV-			
50mV-			
0mV-			
-50mV 890ns 895ns 900ns	905ns 910ns 915ns	920ns 925ns 930ns	935ns 940ns 945ns 950ns


- It is short! (Pulse width down to several ns)
- It is fast! (sub-nanosecond edges!)
- It is clean! (no tails)
- Let's build this!

- Positive and negative polarity 50 Ω LEMO outputs, one can always be used as trigger out.
- Adjustable width (multiturn pot)
- On-board Li-Ion charger circuit
- 3d-printed case has space for recycled 18650 Li-Ion cell (from notebook battery)


BatteryPulser1 PCB performance



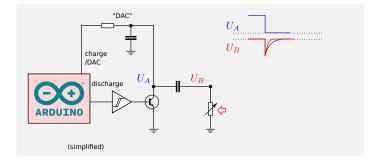
- pulse height = $\pm 400 \text{ mV}$
- FWHM = 1 us down to 1 ns
- $\bullet \ \, edges \approx 440\, ps$
- pulse width and timing is extremely stable

Games to play with BatteryPulser1

Games to play with BatteryPulser1

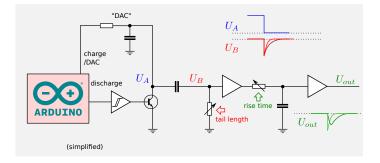
• "Main Course" - The Spectral Pulser

Question

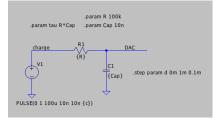

• What else can we do with this technology?

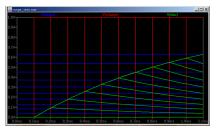
Question

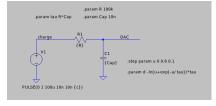
- What else can we do with this technology?
- Can we make pulses that look like detector signals?

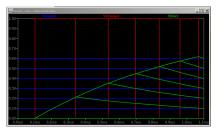

Question

- What else can we do with this technology?
- Can we make pulses that look like detector signals?
- Can we have a charge/amplitude spectrum?

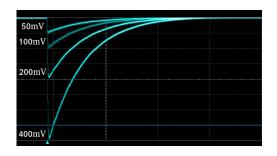

general principle


- Use GPIO pin to charge a capacitor to desired amplitude
- Trigger a fast transistor to discharge capacitor \rightarrow create heaviside edge
- Feed edge into a CR filter to create an exponential pulse. Changing the "R" changes the tail.
- A subsequent RC filter can reduce the steepness of the leading edge


general principle

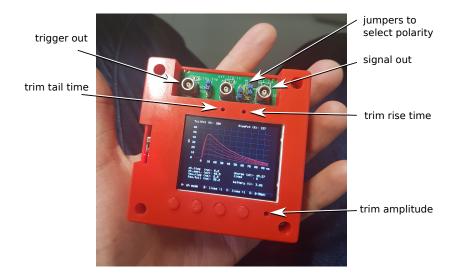

- Use GPIO pin to charge a capacitor to desired amplitude
- $\bullet\,$ Trigger a fast transistor to discharge capacitor \rightarrow create heaviside edge
- Feed edge into a CR filter to create an exponential pulse. Changing the "R" changes the tail.
- A subsequent RC filter can reduce the steepness of the leading edge

- Combination of RC charge and discharge
- Advantage over "charge-only" DAC:
 - Better precision for small amplitudes
 - No need for Tri-State or sample-and-hold
 - constant sampling time: $T_{charge} + T_{discharge} = T_{sample} = const$
- Above example: $\tau = RC = T_{sample} = 1 \text{ ms}$
- The discharge helps improving the amplitude precision!

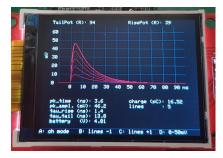

• There exists an analytic function to calculate charge/discharge time from desired target amplitude

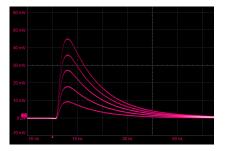
•
$$\frac{d}{\tau} = -\ln\left(\frac{U_{DAC}}{3.3\,\mathrm{V}} + e^{-(c+d)/\tau}\right)$$

•
$$d = T_{discharge}, c = T_{charge}, \tau = RC$$


Immitating detector seeing multiple "lines"

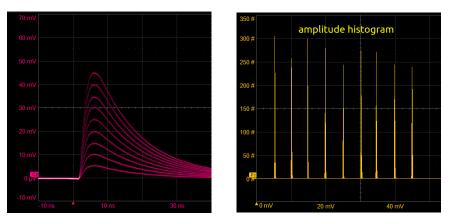
pro_micro_spectral_pulser Arduino 1.8.10	-	• •
		ø
pro_micro_spectral_pulser		
<pre>void loop() { // put your main code here, to run repeatedly:</pre>		
<pre>int lines = 4; int i = random(0,lines);</pre>		
switchild case 0: pulse_w(100); brais; trais(case 2); brais; case 2; brais; brais; case 3; pulse_w(200); brais; brai; brais; bra		
}		, i
Done uploading.		
19 LilyPad Arduino L	ISB on/devit	ыАСМО




• The math can be done on a microcontroller and hidden behind high level functions

The Device - SpectralPulser1

Preview vs scope

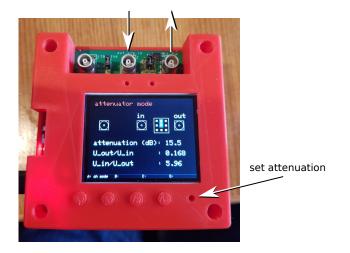


preview

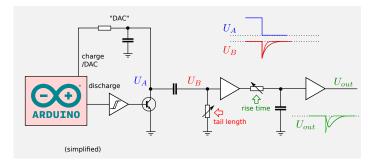
scope (into 50Ω)

- Model circuit behaviour with analytical function
- Plot function and print pulse characteristics on display i.e. peaking time, peak amplitude, τ_{rise}, τ_{tail}, charge
- peaking time: 2 ns to 30 ns
- decay constant $\tau_{\textit{tail}}$: 3 ns to 110 ns
- Preview is not perfect, but within $\approx 5\%$ error margin
- 2.2" TFT with ILI9341 controller

- Amlitude spectrum recorded on oscilloscope
- $\bullet\,$ due to self-similarity of pulse \to amplitude spectrum $\propto\,$ charge spectrum


Dynamic range - Attenuator

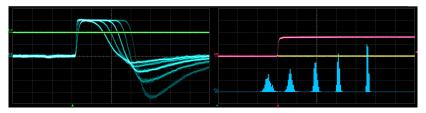
SKY12347-362LF


- The RC-DAC is only "half the truth"
- To extend the dynamic range a programmable RF attenuator IC is used: SKY12347
- 0 dB to 31 dB in 0.5 dB steps
- DC-3 GHz (according to datasheet)
- 1 dB insertion loss
- 50 Ω in, 50 Ω out
- Attenuator sets "coarse" amplitude, RC-DAC sets remaining "fine" amplitude
- SpectralPulser1 has three amplitude ranges: 0 mV to 500 mV, 0 mV to 50 mV, 0 mV to 50 mV,
- 0.1 pC to 1300 pC (also depends on τ_{tail})

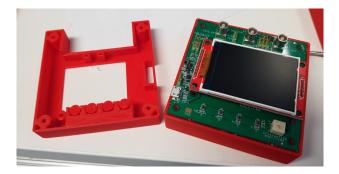
Bonus Feature - Attenuator mode

• What you see is what you get

What about the potentiometers?



How do we read out the multiturn potentiometers?


- The trimmers determine the shape of the pulses.
- Cannot use digital potentiometers, not HF compatible.
- $\bullet\,$ The pulses are very fast, only AC properties matter \to AC coupling.
- With GPIOs and additional transistors trimmers can be made part of DC voltage dividers, measure voltage drop on trimmer with Arduino ADC pin.
- After each few hundred pulses, read out potentiometers and update plot.

preamp output

preamp output ToT spectrum

- With scope persistence you can directly see how the amplifier responds to different charges/amplitudes
- Directly see walk!

- 3d printed designed (coded) in OpenSCAD
- there is room in "the basement" for 1-2 Li-lon cells

Thank you for you atten(ua)tion