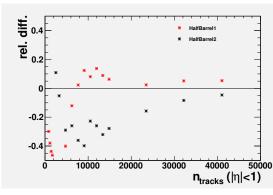
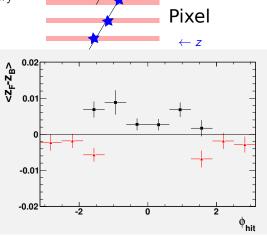
Pixel Half Barrel Alignment


Jörg Behr

2010

Misalignment Scenario

- MC → Fall10 MinBias 7TeV-pythia8 ALCARECO
- misalignment scenario applied
 - ightarrow pixel half barrels shifted by $\pm 50~\mu\mathrm{m}$ along global z direction
- track cuts: p > 3 GeV, $p_T > 0.65 \text{ GeV}$, $n_{Hit} >= 8$, $-1 < \eta < 1$
- relative difference between extracted alignment constants and applied movements
- only alignment constants for the pixel half barrels were determined
- \rightarrow using \approx 40000 tracks the alignment precision is about 5%

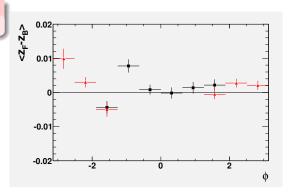

Monte Carlo Study of Pixel Half Barrel Movements

 pixel layer 3 → difference between z position as predicted by the forward and backward trajectory states on surface

• plot average, $\langle z_f - z_b \rangle$, as a function of ϕ_{bit}

Example:

- misalignment was applied to the MC (Minimum Bias)
- track cuts: p > 10 GeV, $p_T > 0.65 \text{ GeV}$, $n_{Hit} >= 8$, ...
- → shifts visible, but limited sensitivity!



Strip

Data

Data minimum bias run B

- IOV dependent alignment constants
- track cuts: p > 10 GeV,
 p_T > 0.65 GeV,
 n_{Hit} >= 8, ...
- possible next steps: study the movement without applying alignment constants?

