

- MadGraph / MadEvent analysis (distributions)
- MadGraph / MadEvent event selection
- SHERPA generation of events
- SHERPA fast simulation
- Thesis (mainly CKKW / MLM matching algorithms)
- Next steps

MadGraph

MadGraph

MadGraph

MadGraph

Analysis Event Selection SHERPA Fastsim Thesis Ne

MadGraph

Next St

${\sf MadGraph}$

 $pp \rightarrow t\bar{t} + X$ jets, X = (0, 1, 2, 3)Event selection, like in CMS PAS TOP-09-003

Step	Cut	Events passed
0	-	100000
$1 (\mu)$	Global, $ \eta < 2.1, p_T > 20$ GeV,	13690
	$Rellso < 0.05, \tfrac{\chi^2}{ndf} < 10$	
2(Jet)	\geq 4, p_T > 30 GeV, $ \eta <$ 2.4	18766
3(e)	no electron with $p_T > 30$ GeV,	51714
	$ \eta <$ 2.5, Rellso $<$ 0.2	
4 (MET)	$p_T > 40 ~GeV$	28549
Σ		295

Tabelle: Event Selection

Event generation

Event	Decay Channel	Result
$t\overline{t}$ + up to 3 jets	any	t>1000~d , errors
$t\overline{t}$ + 3 jets	any	t> 100 d
$t\overline{t}$ + up to 2 jets	leptonic	errors
$t\overline{t}$ + up to 2 jets	semileptonic	tpprox 4 d , internal error
$t\overline{t} + up$ to 2 jets	hadronic	tpprox 12~d , internal error

Matrix element generators used: Comix and Amegic We are still trying to find a working configuration $t\bar{t}$ with up to 1 additional jet could work.

Fastsimulation

- new version is running on Zeuthen and NAF batch
- output is stored at dCache
- 5000 events pprox 4Gb
- BUT: we need old version to compare with madgraph
- output of new SHERPA version is not compatible with old version of fastsim

written:

- Basic structure (List of Figures, Tables, Symbols, ...)
- Introduction (Standard Model, LHC, CMS, Top Quark)
- Monte Carlo (MadGraph/SHERPA)
- Matching of matrix elements and parton showers (CKKW / MLM)

CKKW Cluster partons, back to $2 \rightarrow 2$

MLM Cluster partons, back to $2\rightarrow 2$

CKKW

MLM

• Cluster partons, back to $2 \rightarrow 2$

CKKW

- Cluster partons, back to $2 \rightarrow 2$
- Calculate α_s -weight for each node

CKKW

- Cluster partons, back to $2 \rightarrow 2$
- Calculate α_s -weight for each node
- Reweight each line between nodes with Sudakov weight

CKKW

- Cluster partons, back to $2 \rightarrow 2$
- Calculate α_s -weight for each node
- Reweight each line between nodes with Sudakov weight
- Final states, which are more likely from PS are suppressed

CKKW

- Cluster partons, back to $2 \rightarrow 2$
- Calculate α_s -weight for each node
- Reweight each line between nodes with Sudakov weight
- Final states, which are more likely from PS are suppressed
- Perform parton showering

CKKW

- Cluster partons, back to $2 \rightarrow 2$
- Calculate α_s -weight for each node
- Reweight each line between nodes with Sudakov weight
- Final states, which are more likely from PS are suppressed
- Perform parton showering

MLM

• Cluster partons, back to $2 \rightarrow 2$

CKKW

- Cluster partons, back to $2 \rightarrow 2$
- Calculate α_s -weight for each node
- Reweight each line between nodes with Sudakov weight
- Final states, which are more likely from PS are suppressed
- Perform parton showering

- Cluster partons, back to $2 \rightarrow 2$
- Calculate α_s -weight for each node

Event Selection SHERPA Fastsim Thesis

CKKW

Analysis

- Cluster partons, back to $2 \rightarrow 2$
- Calculate α_s -weight for each node
- Reweight each line between nodes with Sudakov weight
- Final states, which are more likely from PS are suppressed
- Perform parton showering

- Cluster partons, back to $2 \rightarrow 2$
- Calculate α_s -weight for each node
- Perform parton showering

CKKW / MLM

CKKW

Analysis

- Cluster partons, back to $2 \rightarrow 2$
- Calculate α_s -weight for each node
- Reweight each line between nodes with Sudakov weight
- Final states, which are more likely from PS are suppressed
- Perform parton showering

MLM

• Cluster partons, back to $2 \rightarrow 2$

Thesis

- Calculate α_s -weight for each node
- Perform parton showering
- Apply jet finding algorithm (k_⊥)

CKKW / MLM

CKKW

Analysis

- Cluster partons, back to $2 \rightarrow 2$
- Calculate α_s -weight for each node
- Reweight each line between nodes with Sudakov weight
- Final states, which are more likely from PS are suppressed
- Perform parton showering

MLM

• Cluster partons, back to $2 \rightarrow 2$

Thesis

- Calculate α_s -weight for each node
- Perform parton showering
- Apply jet finding algorithm (k_⊥)
- Match jets to partons

CKKW / MLM

CKKW

Analysis

- Cluster partons, back to $2 \rightarrow 2$
- Calculate α_s -weight for each node
- Reweight each line between nodes with Sudakov weight
- Final states, which are more likely from PS are suppressed
- Perform parton showering

MLM

• Cluster partons, back to $2 \rightarrow 2$

Thesis

- Calculate α_s -weight for each node
- Perform parton showering
- Apply jet finding algorithm (k_⊥)
- Match jets to partons
- Reject not matching events

- If SHERPA runs everything will be fine.
- If there is no way to run SHERPA with the MG/ME settings, we could run SHERPA with up to 1 jet and apply the settings to MG/ME.
- OR: We could try to use the old version of SHERPA.
- OR: We can run SHERPA without showering and hadronization and do these steps later with CMSSW