Prospects of measuring the Higgs self-coupling at the ILC.

DPG Spring Meeting

Julie Munch Torndal^{1,2}, Jenny List¹, Yasser Radkhorrami^{1,2}

¹DESY, Hamburg

 2 Universität Hamburg, Hamburg

March 13, 2022

Understanding the Higgs Field

$$\mathcal{L}_{\text{Higgs}} = -g_{Hf\bar{f}} + \frac{g_{HHH}}{6}H^3 + \frac{g_{HHHH}}{24}H^4 + \delta_V V_\mu V^\mu (g_{HVV}H + \frac{g_{HHVV}}{2}H^2)$$
 (1)

- > The Lagrangian describes the the Higgs couplings to fermions, gauge bosons, and to itself where the self-coupling parameters are defined as $g_{HHH}=6\lambda\nu$ and $g_{HHH}=6\lambda$
- > Measuring the Higgs self-coupling can lead to better understanding the Higgs potential
- > Double Higgs production gives access to Higgs self-coupling

The International Linear Collider

High-luminosity linear electron-positron collider

Polarised beams: $P(e^+, e^-) = (\pm 30, \pm 80)\%$ \sqrt{s} -range: 250–500GeV (extendable to 1TeV)

Length: $\sim 31 km$

Particle physics at the precision frontier:

- No substructure of electrons
- No underlying event
- No PDFs i.e. initial state is known is all directions

Double Higgs Production @ ILC

Planned phase: $\sqrt{s} = 500 \, \text{GeV}$ with $\mathcal{L} = 4 \, \text{ab}^{-1}$

Julie Munch Torndal | DPG Spring Meeting | March 13, 2022 | Page 3

Measuring the Higgs Self-Coupling

Signature: 6-particle final state

Expected precision on the measurement:

$$\frac{\Delta\lambda}{\lambda} \propto \frac{\Delta\sigma}{\sigma}$$

Latest full detector simulation study at ILC [DESY-THESIS-2016-027] clearly demonstrated the ILC's ability to discover double Higgs production and to measure λ ... and gave a strategy for further improvements. After full ILC running scenario a precision

- \rightarrow on σ_{ZHH} of 16.8 %
- \rightarrow on λ_{SM} of 26.6 %
- \rightarrow on $\lambda_{\rm SM}$ combined with additional running scenario at 1 TeV of 10 %
- > assumed combining the most dominant channels HH o bbbb and HH o bbWW

Challenges:

- > Small cross section: only 395 events are expected in total
- > Overlapping jets: Jet-finding ambiguities

Event reconstruction

- $\,>\,$ Isolated lepton tagging selection or rejection
- > Overlay removal
- > Jet reconstruction from remaining event
- > Flavour tagging
- > ErrorFlow
- > Kinematic fit

Isolated lepton tagging

- > neural-based approach
- > separate signature leptons from leptons in semi leptonic decays and mis-identified leptons

Overlay removal

- $> \gamma \gamma \rightarrow \text{low-}p_T \text{ hadrons}$
- > Expect $\langle \textit{N}_{\textit{overlay}} \rangle = 1.2$ particles/event
- > Not included in the results of the latest analysis

b-tagging tools

- > Latest analysis showed that a 5% relative improvement in the b-tagging efficiency for the same purity would lead to a relative improvement of 11% in the precision on $\sigma_{\rm ZHH}$ [DESY-THESIS-2016-027]
- > This improvement in b-tagging tools has already been achieved [arXiv:2003.01116]

ZZH Background

50

50

100

150

200

M(H2) [GeV]

Large overlap between signal and background $\to Z/H$ separation crucial for identifying Higgs production!

Event reconstruction can be improved with a kinematic fit

Kinematic Fitting

Event Reconstruction

Exploit well-known initial state in e^+e^- colliders for:

- Jet-pairing
- > Measurement corrections

χ^2 -function to minimise:

$$L(y) = S(y) + 2\sum_{k=1}^{m} \lambda_k f_k(a, y)$$

- > Least Squares Principle: $S(y) = \Delta y^T \mathbf{V}(y)^{-1} \Delta y = \min$
- > Lagrange multipliers: $2\sum_{k=1}^{m} \lambda_k f_k(a, y)$
- > Model expressed as m constraints: $f_k(\bar{a}, \bar{y}) = 0$, k = 1, ..., m

- y: set of measured parameters
- a: set of unmeasured parameters
- Δy : corrections to y
- $\mathbf{V}(y)$: covariance matrix for y

ErrorFlow

Jet energy resolution parametrisation

Correct error parametrisation is crucial for kinematic fitting

Parametrize sources of uncertainties (assumed uncorrelated) in jet energy measurements (ErrorFlow):

$$\sigma_{\textit{E}_{\textit{iet}}} = \sigma_{\textit{Det}} \oplus \sigma_{\textit{Conf}} \oplus \sigma_{\nu} \oplus \sigma_{\textit{Clus}} \oplus \sigma_{\textit{Had}}$$

- $>\sigma_{Det}$: Detector resolution using track and cluster parameters
- σ_{Conf}: Particle confusion in Particle Flow Algorithm Estimated based on jet energy and neutral hadron / photon energy fractions
- $> \sigma_{\nu}$: Semi-leptonic decays: error propagation from neutrino correction currently done with cheating Recent advancements for future iterations where netrino correction is done from reconstruction
- $>\sigma_{\it Clus}$: Misassignment of particles in the jet clustering, has not been included yet
- $> \sigma_{Had}$: Mismodeling of QCD effects in parton shower and hadronization, has not been included yet

Residuals

- > No semileptonic decays
- > No overlay
- Residuals show correctly estimated errors for ZH but underestimated errors for ZHH
- > Expect larger multiplicity for ZHH than for ZH i.e. more mis-clustering $\to \sigma_{\it Clus}$

Julie Munch Torndal | DPG Spring Meeting | March 13, 2022 |

Z/H Separation

Fitted Higgs masses

Four-momentum conservation constraints:

$$\sum p_x = \sqrt{s} \cdot \sin(0.007) \approx 3.5 \text{ GeV}$$

$$\sum p_y = 0$$

$$\sum p_z = 0$$

$$\sum E = 500 \text{ GeV}$$

Equal mass constraint:

$$m_{j_1j_2} - m_{j_3j_4} = 0$$

Including ISR in fit

Summary

- ullet ILC's ability to discover double Higgs production and measure λ has been clearly demonstrated in the past
- Tremendous improvements in high level reconstruction tools have been achieved in the last 5+ years
- The sensitivity to the Higgs self-coupling is expected to improve when propagating the newest tools to the analysis
- With this new analysis, the question of how well the Higgs self-coupling can be measured at the ILC now will be answered important for shaping the landscape of future colliders