Prospects of measuring the Higgs self-coupling at the ILC.

DPG Spring Meeting

Julie Munch Torndal^{1,2}, Jenny List¹, Yasser Radkhorrami^{1,2}

March 24, 2022

¹DESY, Hamburg

 $^{^2}$ Universität Hamburg, Hamburg

Understanding the Higgs Field

$$\mathcal{L}_{\mathrm{Higgs}} = - \mathit{g}_{\mathit{Hf\bar{f}}} + \frac{\mathit{g}_{\mathit{HHH}}}{6} \mathit{H}^3 + \frac{\mathit{g}_{\mathit{HHHH}}}{24} \mathit{H}^4 + \delta_\mathit{V} \mathit{V}_\mu \mathit{V}^\mu (\mathit{g}_{\mathit{HVV}} \mathit{H} + \frac{\mathit{g}_{\mathit{HHVV}}}{2} \mathit{H}^2)$$

> The Lagrangian describes the the Higgs couplings to fermions, gauge bosons, and to itself $g_{HHH}=6 \pmb{\lambda} \nu \ \ {\rm and} \ \ g_{HHHH}=6 \pmb{\lambda}$

> Measuring $oldsymbol{\lambda}
ightarrow \mathsf{Higgs}$ potential

The International Linear Collider

High-luminosity linear electron-positron collider

Polarised beams: $P(e^+, e^-) = (\pm 30, \pm 80)\%$ \sqrt{s} -range: 250–500GeV (extendable to 1TeV) Clean experimental environment:

- No substructure of electrons
- No underlying event
- No PDFs i.e. initial state is known in all directions
- Particle physics \rightarrow precision frontier

Double Higgs Production @ ILC

Planned phase: $\sqrt{s} = 500 \, \text{GeV}$ with $\mathcal{L} = 4 \, \text{ab}^{-1}$

Measuring the Higgs Self-Coupling

Signature: 6-particle final state

Expected precision on the measurement:

$$\frac{\Delta\lambda}{\lambda} \propto \frac{\Delta\sigma}{\sigma}$$

Challenging because of small cross section

ightarrow 395 events in total

Previous results [DESY-THESIS-2016-027]

After full ILC running scenario ($HH o bar{b}bb + HH o bbWW$)

$$\rightarrow \Delta \sigma_{\text{ZHH}}/\sigma_{\text{ZHH}} = 16.8\%$$

$$\rightarrow \Delta \lambda_{\rm SM}/\lambda_{\rm SM} = 26.6\%$$

ightarrow $\Delta\lambda_{\rm SM}/\lambda_{\rm SM}~=10\%$ when combined with additional running scenario at 1 TeV

Discovery potential clearly demonstrated

Strategy for further improvements

Better reconstruction tools now

improve precision on σ_{ZHH} and λ_{SM} !

Event reconstruction

- > Isolated lepton tagging selection or rejection
- > Overlay removal
- > Jet reconstruction from remaining event
- > Flavour tagging
- > ErrorFlow
- > Kinematic fit

Isolated lepton tagging

> identify signature leptons

Overlay removal

- $> \gamma \gamma \to {\sf low-} p_T$ hadrons
- > Expect $\langle \textit{N}_{\textit{overlay}} \rangle = 1.2 \; \text{particles/event}$
- > Not included previously ×

b-tagging tools

> Better b-tagging efficiency \checkmark [arXiv:2003.01116] 5% relative improvement in $\varepsilon_{b\text{-tag}}$ $\rightarrow 11\%$ relative improvement in $\Delta\sigma_{\text{ZHH}}/\sigma_{\text{ZHH}}$ [DESY-THESIS-2016-027]

ZZH Background

Main irreducible background with a similar signature to ZHH

Large overlap between signal and background

 $\rightarrow \, Z/H \,\, separation \,\, is \,\, crucial!$

Solution: Kinematic fit

Kinematic Fitting

Event Reconstruction

Exploit well-known initial state in e^+e^- colliders for:

- Jet-pairing
- > Measurement corrections

χ^2 -function to minimise:

$$L(y) = S(y) + 2\sum_{k=1}^{m} \lambda_k f_k(a, y)$$

- > Least Squares Principle: $S(y) = \Delta y^T \mathbf{V}(y)^{-1} \Delta y = \min$
- > Lagrange multipliers: $2\sum_{k=1}^{m} \lambda_k f_k(a, y)$
- > Model expressed as m constraints: $f_k(\bar{a}, \bar{y}) = 0$, k = 1, ..., m

- y: set of measured parameters
- a: set of unmeasured parameters
- Δy : corrections to y
- $\mathbf{V}(y)$: covariance matrix for y

ErrorFlow

Jet energy resolution parametrisation

Correct error parametrisation is crucial for kinematic fitting

Parametrize sources of uncertainties for jets:

$$\sigma_{\textit{E}_{jet}} = \sigma_{\textit{Det}} \oplus \sigma_{\textit{Conf}} \oplus \sigma_{\nu} \oplus \sigma_{\textit{Clus}} \oplus \sigma_{\textit{Had}}$$

- $> \sigma_{Det}$: Detector resolution
- $> \sigma_{\it Conf}$: Particle confusion in Particle Flow Algorithm
- $> \sigma_{\nu}$: Semi-leptonic decays: neutrino correction currently done with **cheating** Coming soon: netrino correction done from **reconstruction**
- > $\sigma_{\it Clus}$: Misassignment of particles in the jet clustering
- $> \sigma_{Had}$: Mismodeling of QCD effects

not included yet

Residuals

- No semileptonic decays
- No overlay events ($\gamma \gamma \rightarrow \text{hadrons}$)
- Residuals show correctly estimated errors for ZH but underestimated errors for ZHH
- Expect larger multiplicity for ZHH than for ZH i.e. more mis-clustering $\rightarrow \sigma_{Clus}$

Z/H Separation

Four-momentum conservation constraints:

$$\sum
ho_x = \sqrt{s} \cdot \sin(0.007) \approx 3.5 \text{ GeV}$$
 $\sum
ho_y = 0$
 $\sum
ho_z = 0$
 $\sum E = 500 \text{ GeV}$

Equal mass constraint:

$$m_{j_1j_2} - m_{j_3j_4} = 0$$

Including ISR in fit

Summary

- ullet Past results: ILC can discover HH production and measure λ
- Last 5+ years: Achieved even better high level reconstruction tools
- Now: Expect even better sensitivity to HH production and λ at ILC
- Next step: How much better? important for shaping the landscape of future colliders