Detection and Reconstruction of High-Flux Electron Energy Spectra in the Strong-Field QED Regime with LUXE

John Hallford, Prof. Matthew Wing

University College London / DESY

DPG Spring Matter and Cosmos Section Meeting, 22.03.2022, 17:00 - 17:15

Strong-Field QED

$$E_{Schwinger}\equiv m_e^2c^3/e\hbar=1.32 imes 10^{18}~Vm^{-1}$$

$$\xi = \frac{eE_L}{m_e \omega_L c} = \frac{m_e E_L c^2}{\omega_L E_{Schw.} \hbar}$$

$$\chi = \frac{E_p}{E_{Schw.}} = \frac{p}{m_e} \frac{E_L}{E_{Schw.}} (1 + \beta cos(\theta)) = 2\gamma_p \frac{E_L}{E_{Schw.}}$$

- QED is the one of the most quantitatively accurate physical theories in history
- Breaks down for high energy scales, high external EM fields
 - Spontaneous pair production observed around the Schwinger Limit
 - Useful to define unitless parameters **ξ**, **χ**
- Key interactions are Non-Linear Compton Scattering, Multiphoton Breit-Wheeler process
- Analogous to Hawking Radiation for gravitational field; such EM fields expected in magnetars, future lepton colliders

LUXE Experiment

- High-power LASER collided with <u>electrons</u> (e-LASER) or photons (γ-LASER)
 - Electrons from EU.XFEL, typical n=1.5x10⁹ & E=16.5 GeV
- Electron bunches delivered at 10Hz, LASER pulses at 1Hz
- Aims to push into new **x** parameter space with enough statistics to make high-quality measurements
- Photons produced by bremsstrahlung (W Target) or Inverse-Compton Scattering (Split LASER beam)

Detectors at LUXE

- Electrons are to be detected at e-LASER IP region (total 10⁷ to 10⁹) at energy between 1-16 GeV for $E_{heam} = 16.5 \text{ GeV}$
- Charged particles are diverted by magnetic field, acting as magnetic spectrometer
- Particle Flux measurement with respect to position allows for energy reconstruction
- Electron detection wants to measure total flux/BX and 'Compton Edge' position in energy

DPG Spring Meeting - john.hallford.19@ucl.ac.uk

Scintillation Screen, Camera and Filter

GadOx Scintillation Wavelength Emission

- Scintillator is Gadolinium Oxysulfide, efficiency up to 15%
- Relatively long decay time allows sensor exposure after event
- Optical filter used to remove any ambient light

Optical Filter Blocking by Wavelength

CMOS Sensor Quantum Efficiency by Wavelength

DPG Spring Meeting - john.hallford.19@ucl.ac.uk

22/03/22

5

Reconstruction in Simulation

- Geant4 simulation + reconstruction delivers high energy resolution for realistic 125 micron position resolution, and just one beam-LASER event
- This discrepancy between truth & reconstruction, expected to be less than B-field uncertainty (~1%) and charge-light calibration (~1%)
 - Both total flux of electrons, edge position are wanted

6

Test-Beam Prototype ø1cm Cameras Collimator Screen counts 00008 aggregated 50000 50000 50000 S 40000 30000 20000 10000 200 400 600 800 1000 1200 y pixel

- High-flux LASER-plasma testbeam at DESY used to test Screen & Camera prototype
 - Shown: result of 4000 events of up to 10⁷ e⁻ at ~60 MeV

Summary

- LUXE is an experiment under design & planning, intending to push into new parameter space of χ , with intent to measure rates & kinematics of Non-Linear Compton Scattering & Multiphoton Breit-Wheeler Process
 - A scintillator screen & camera system is chosen to measure the high-flux high-energy electrons; with a magnetic field, the system acts as magnetic spectrometer with high energy resolution
- The setup has been constructed in Geant4, a reconstruction algorithm developed & tested, and a prototype of the detector system constructed and tested in high-flux beam

Further Reading: Our Conceptual Design Report arxiv.org/abs/2102.02032

backup

Non-Linear Compton Scattering & Spontaneous Breit-Wheeler

Non-linear Compton Scattering

Multi-Photon Breit-Wheeler Process

LUXE Physics Expected Results

Probing into new parameter-space

Pair-production rate with ξ

e-LASER IP Electron Detection System

Gamma Beam Generation

Electron Detection at LUXE

- Position resolution dictates energy resolution
- Charged particles radiating via
 Cherenkov mechanism, dependent only on β (changes very little for 1-16 GeV energy range)
- A thin scintillating material can then be placed before the Cherenkov detector with virtually no effect on its detection
- Energy deposition dE/dx for electrons of GeV energy in a material is flat, again dependent on only β

Signal and Background

Signal vs Background Incident on Screen in x

10⁹ E / BX [GeV] **LUXE** TDR 10⁸ IP Scintillator - e-laser 10⁷ Signal e, $\xi = 2.0$ 10⁶ Background e Background γ 10⁵ 10^{4} 10³ 10 -600-500-400-300-200-100x position [mm]

Signal vs Background Electrons Incident on Screen in y

- Whole LUXE Experimental Chamber, simulated in Geant4

Signal and Background

- Electron spectra reconstructions
 (ξ = 2.0) completed in Geant4, using the LUXE e-LASER geometry and simulating the scintillation physics process, but not explicitly optical transport
- High Signal / Background for radiation incident upon screen. Signal is more collimated within center of screen, so we use only this for signal measurement
 - Profile of Background radiation along surface of screen is symmetrical around beam axis
 - Beam-only events also used for background estimation

Test-Beam Prototype

- ∼2cm diameter beam

Test-Beam Prototype

Cameras, Lens, Filter

543nm Fluorescence Bandpass Filter OD >6.0 Coating Performance FOR REFERENCE ONLY

- Scintillation light can be imaged remotely to keep electronics out of beam-plane
 - Quantum efficiency for photons λ=545nm ~70%

Background

- Background scattering composed of relatively flat profile superimposed with one symmetric around e- beam axis
 - Background neutron flux (left) vs. background electron flux (right)
 - Background profiles can be built from no-LASER bunches, accumulating up to 9Hz for every 1Hz of signal

Summary

- LUXE is an experiment under design & planning, intending to push into new parameter space of **x**, with intent to measure rates & kinematics of Non-Linear Compton Scattering & Multiphoton Breit-Wheeler Process
- High-energy Electrons/Photons are collided with a LASER pulse at high repetition rate to build high-statistics measurements for a range of ξ , χ
 - A scintillator screen & camera system is chosen to measure the high-flux high-energy electrons; with a magnetic field, the system acts as magnetic spectrometer with high energy resolution
 - The setup is simulated in Geant4 and results used, combined with a developed reconstruction algorithm, to reconstruct energy distributions
 - A prototype of the detector has been constructed, and measurements of high-flux testbeam completed (with deeper analysis still underway)

Further Reading: Our Conceptual Design Report arxiv.org/abs/2102.02032

21