Designing VQE ansatz circuits for track reconstruction at LUXE

Arianna Crippa^{1,2}, Lena Funcke³, Tobias Hartung^{4,5}, Beate Heinemann^{6,7}, Karl Jansen¹, Annabel Kropf ^{6,7}, Stefan Kühn⁵, Federico Meloni⁶, **David Spataro**^{6,7}, Cenk Tüysüz^{1,2}, Yee Chinn Yap⁶

LUXE

DPG Spring Meeting, Heidelberg 23.3.2022

⁷ Albert-Ludwigs-Universität Freiburg

¹ DESY, Zeuthen

² Humboldt-Universität zu Berlin

³ MIT

⁴ University of Bath

⁵ CaSToRC, The Cyprus Institute

⁶ DESY, Hamburg

LUXE - Laser und XFEL Experiment I

Goals and theoretical background

- Investigate transition into the non-perturbative regime of QED
- Search for new BSM particles coupled to photons
- Perturbative regime of QED very well known and tested
- Investigating phenomena starting above the *Schwinger Limit* ~ 10¹⁸ V/m

$$\xi = \frac{m_e}{\omega_L} \frac{\mathscr{E}_{\mathrm{L}}}{\mathscr{E}_{\mathrm{cr}}}$$

$$\Delta t \sim rac{h}{2m_e c^2} \simeq 10^{-21} \, {
m s}, \quad \Delta x \sim rac{h}{2m_e c} \simeq 10^{-12} \, {
m m}.$$

[2]

$$\mathscr{E}_{\mathbf{Cr}} \, \triangleq rac{2m_ec^3}{e\hbar} \simeq 10^{18}\,\mathrm{V/m}.$$

[2]

Goals and theoretical background

- 16.5 GeV e⁻ beam from XFEL or a converted gamma beam crossed with a powerful laser (up to 350 TW) respectively
- Measuring Compton process in electron-laser interactions
- Measuring positron rate in electron- and photon-laser interactions

LUXE positron tracking system I

Silicon pixel tracker

Based on ALPIDE silicon pixel sensor, 27
 x 29 µm² pixels on 30 x 15 mm² chips, 9
 chips on each stave

Simplified simulation to study track reconstruction

LUXE positron tracking system II

Detector occupancy

- 10⁻³ 10⁶ positrons / BX expected
- low occupancy required to reconstruct tracks

Track reconstruction technique

Forming tracks by connecting hits of consecutive layers

- Doublets → triplets → track
- Triplets as (part of) track candidates
- Binary value assigned to track candidates:
 - $1 \rightarrow \text{keep}$
 - $0 \rightarrow discard$

result is a sequence, e.g 01100101001....

- Problem: 100 particles lead to 10⁸ triplets
- Apply angle- and position-based preselection before :
 800 particles → 5k doublets → 2700 triplets

DESY.

Variational Quantum Eigensolver (VQE)

Overview

- The variational method: Optimizing an upper bound for the lowest possible expectation value with respect to the trial wave function
- Find a parametrization of ψ such that the expectation value of the Hamiltonian is minimized
 - \rightarrow find approximation to the eigenvector ψ of \hat{H} to the lowest eigenvalue
- Define an "ansatz" wavefunction, implemented as a series of quantum gates

$$E_0 \leqslant \frac{\langle \psi | \hat{H} | \psi \rangle}{\langle \psi | \psi \rangle}$$

$$E_{\text{VQE}} = \min_{\boldsymbol{\theta}} \langle \mathbf{0} | U^{\dagger}(\boldsymbol{\theta}) \hat{H} U(\boldsymbol{\theta}) | \mathbf{0} \rangle$$

DESY.

Track reconstruction workflow

From data to track candidates

Designing a quantum circuit I

Noise and errors

- Circuit depth, number of gates, particular the number of entanglements have a high influence on the outcome of a measurement on a real quantum device
- Optimization of these parameters crucial, especially in the NISQ era

DESY.

Designing a Quantum Circuit II

Two Local configurations as benchmarks

- Direct entanglements only possible if qubits on devices are connected, otherwise, one has to propagate values through the circuit
- Error rates of qubits and gates vary

[5]

Designing a Quantum Circuit III

Dynamically created hamiltonian-aware ansatz

- Structure of the ansatz resembles structure of the hamiltonian
- CX gates have a high error probability

 → use as few controlled CX gates as
 possible

Performance on ideal simulation

Solving success and time performance

Solving time / SubQUBO:

• Linear: 2.17 ± 0.31s

Circular: 3.62 ± 0.14s

• Full: 4.79 ± 0.54s

• custom: 3.35 ± 0.33s

Conclusion / Outlook

Summary / What's next?

- Custom approach delivers slightly better results and is also faster in terms of SubQUBOs
- Significant decrease in CX-gates will lead to less noisy results on real hardware
- Investigating impact of global optimization algorithm on SubQUBO hamiltonian
- Next Step: Move from ideal to noisy simulation

Thank you very much!

Any questions?

Sources

¹https://arxiv.org/abs/2102.02032 on 23.2.2022

²http://naturalunits.blogspot.com/2015/04/the-super-critical-charge.html on *23.2.2022*

³http://opengemist.1qbit.com/docs/vqe_microsoft_qsharp.html

⁴https://arxiv:1902.08324v1 *13.3.2022*

⁵https://www.nature.com/articles/s41598-022-05971-9

https://arxiv.org/pdf/2202.06874.pdf, 13.3.2022

https://acts.readthedocs.io/en/latest/ 10.3.2022

https://arxiv.org/pdf/2111.05176.pdf 13.3.2022

qiskit.org 23.2.2022

Appendix I

QUBO

- Quadratic Unconstrained Binary Optimization (QUBO)
- Interactions of triplets are described via b_{ij}, the quality of a triplet as a_i
- Minimizing the objective results in a series of 1's and 0's, which represents the kept and discarded triplets respectively

$$O = \sum_{i}^{N} \sum_{j < i} b_{ij} T_i T_j + \sum_{i=1}^{N} a_i T_i,$$

A pattern recognition algorithm for quantum annealers⁴

Appendix 2

Walking through the energy landscape

Appendix 3

Configuration vs. entanglements / per circuit

Appendix 3

Configuration vs. entanglements / per circuit

