Generative Models Hadronic Shower Simulation

Erik Buhmann, Sascha Diefenbacher, <u>Engin Eren</u>, Frank Gaede, Daniel Hundhausen, Gregor Kasieczka, William Korcari, Anatolii Korol, Katja Krüger, Peter McKeown, Lennart Rustige

22.03.2022
DPG Spring Meeting

The bottleneck in HEP Computing Resources

- MC simulation is computationally expensive
 - Calorimeters most intensive part of detector simulation
- Generative models potentially offer orders of magnitude speed up
- Amplify statistics of original data set
 - Generate new samples following distribution of original data
 - Significant less time per shower

The HEP Software Foundation., Albrecht, J., Alves, A.A. et al. A Roadmap for HEP Software and Computing R&D for the 2020s. Comput Softw Big Sci 3, 7 (2019).

From Photons to Pions

Photon showers

- Predominantly governed by EM interactions
- Compact structure

Pion showers

- Hadronic and EM interactions
- Complex structure
- Large event-to-event fluctuations

Hard to learn

DESY. | Engin Eren

Pion Dataset

- 500k showers
- Fixed incident point and angle
- Projected onto 48 x 25 x 25
- Uniform energy: 10 GeV to 100 GeV

Hybrid simulation of ILD Hadron Calorimeter:

- Hits are recorded for scintillator and RPCs at the same time
- Here only scintillator (AHCal) is used

Architectures: GAN and WGAN

GAN

- Original Generative architecture applied for shower generation
- Discriminator and Generator play a minmax game

WGAN

- Alternative to classical GAN training
- Wasserstein-1 distance as loss with gradient penalty: improve stability
- Addition of auxiliary constrainer networks for improved conditioning performance

Architectures: BIB-AE

Bounded-Information Bottleneck Autoencoder (BIB-AE)

- Unifies features of both GANs and VAEs
- Post-Processor network: Improve per-pixel energies; second training
- Multi-dimensional KDE sampling: better modeling of latent space

Input Intermediate Output $\overline{_{
m Difference}}$ $L_{
m CriticD}$ Latent Post Decoder Processor Encoder Network $L_{
m Critic}$ Critic KLD MSELatent L_{CriticL} Critic $\mathcal{N}(0,1)$ MMD $L_{\text{Post}} = \text{MMD} + \text{MSE}$ $L_{\text{BIB-AE}} = \text{KLD} + L_{\text{CriticL}} + L_{\text{CriticD}} + L_{\text{CriticD}}$

Voloshynovskiy et. al: **Information bottleneck through variational glasses**, arXiv:1912.00830

Pion Shower Results I

Very good agreement of MIP peak for **BIB-AE** with Post-Processing!

Great agreement with Geant4

Too much hits for WGAN ~50 GeV BIB-AE is better

Pion Shower Results II

The most important quantity to get it right..

Pion Shower Results III

BIB-AE reproduces Geant4 distributions **WGAN** performance is not as great...

ILD Analysis Pipeline

..with Generative Models

Pion Showers after Reconstruction

Very good agreement by **WGAN** in the middle incident energies.

Generation Time Particle Flow Calibration & Reconsturction Geant4 Digitization Very slow... Bottleneck! Noise $G(\Omega)$ (Neural Net) Labels Simulator Time / Shower [ms] Speed-up Hardware CPU Geant4 2684 ± 125 $\times 1$ Compare WGAN 47.923 ± 0.089 $\times 56$ BIB-AE 350.824 ± 0.574 $\times 8$ GPUWGAN $\times 10167$ 0.264 ± 0.002 BIB-AE 2.051 ± 0.005 $\times 1309$

Both models offer significant speedups!

Conclusion

Achieved

- Generative models hold promise for fast simulation of calorimeter showers with high fidelity
- Demonstrated high fidelity simulation of hadronic showers with generative models
 - Submitted to *Machine Learning: Science and Technology*

Ongoing Work

- Vary energy and angle simultaneously and study effect on performance
- Incorporate angular conditioning in more sophisticated architectures e.g. B

Next Steps

Simulation of hadronic showers including HCAL and ECAL

<u>arXiv:2112.09709</u>

DESY. I Engin Ere

Backup

DESY. Page 15

Photon Showers

High fidelity of shower properties are achieved

DESY. | Engin Eren

Hardware	Simulator	Photons	
		Time/shower[ms]	Speed-up
CPU	Geant4	4082±170	×1
	WGAN	61.44±0.03	×66
	BIB-AE	95.98±0.08	×43
GPU	WGAN	3.93±0.03	×1039
	BIB-AE	1.60±0.03	×2551

Buhmann, et al.: Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed. Comput Softw Big Sci 5, 13 (2021)

