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The bottleneck in HEP Computing Resources

• MC simulation is computationally intensive

• Calorimeters most intensive part of detector simulation

• Generative models potentially offer orders of magnitude 
speed up 

• Amplify statistics of original data set

• Generate new samples following distribution of original data  

• Significant less time per shower

| Engin Eren
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From Photons to Pions

Photon showers

• Predominantly governed by EM 
interactions

• Compact structure

Pion showers

• Hadronic and EM interactions

• Complex structure

• Large event-to-event fluctuations
Easy to 
generalise

Hard to 
learn

| Engin Eren



Pion Dataset

● 500k showers generated with Geant4

● Fixed incident point and angle

● Projected onto 48 x 25 x 25 

● Uniform energy: 10 GeV to 100 GeV
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Hybrid simulation of ILD Hadron Calorimeter: 
● Hits are recorded for scintillator and RPCs 

at the same time
● Here only scintillator option is used
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Architectures: GAN and WGAN

Generative Adversarial Neural Network

• Original generative architecture applied for 
shower generation

• Discriminator and Generator play a min-
max game 

Wasserstein GAN

• Alternative to classical GAN training

• Wasserstein-1 distance as loss with 
gradient penalty: improve stability

• Addition of an auxiliary constrainer networks 
for improved conditioning performance

| Engin Eren
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Architectures: BIB-AE
Bounded-Information Bottleneck Autoencoder (BIB-AE)

● Unifies features of both GANs and Variational Autoencoders [*]

● Post-Processor network: Improve per-pixel energies; second training

● Multi-dimensional KDE sampling: better modeling of latent space [**]

[*] Voloshynovskiy et. al: Information 
bottleneck through variational glasses, 
arXiv:1912.00830 

| Engin Eren

[**] Buhmann et. al: Decoding Photons: 
Physics in the latent space of a BIB-
AE Generative Network, 
arXiv:2102.12491 



Pion Shower Results I

Great agreement with Geant4Very good agreement  of 
MIP peak for BIB-AE with 
Post-Processing!
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Too much hits for WGAN ~50 GeV
BIB-AE is better 

 arXiv:2112.09709 



Pion Shower Results II

The most important quantity to get it right

Page 8*the mean and root-mean-square of the 90% core of visible energy distributions

*

*



Pion Shower Results III

BIB-AE reproduces Geant4 distributions
WGAN performance is not as great...
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ILD Analysis Pipeline  
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..with Generative Models 
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● First attempts to integrate generative ML 
models into the reconstruction workflow



Pion Showers after Reconstruction

Both models show some discrepancy 
up to 3-5% at the edges.
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Very good agreement by WGAN in 
the middle incident energies. 



Generation Time
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Very slow...
Bottleneck!

Compare

Both models offer significant speedups!
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Conclusion

Achieved

• Generative models hold promise for fast simulation of calorimeter showers with high fidelity

• Demonstrated high fidelity simulation of hadronic showers with generative models

– Submitted to Machine Learning: Science and Technology 

Ongoing Work

• Vary energy and angle simultaneously and study effect on performance

• Incorporate angular conditioning in more sophisticated architectures e.g. BIB-AE

Next Steps

• Simulation of hadronic showers including HCAL and ECAL

| Engin Eren
 arXiv:2112.09709 

Generated Shower by 
BIB-AE
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Backup
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Photon Showers

| Engin Eren

30x30x30 image

Buhmann, et al.: Getting High: 
High Fidelity Simulation of 
High Granularity Calorimeters 
with High Speed. Comput 
Softw Big Sci 5, 13 (2021)

High fidelity of 
shower properties 
are achieved

Significant speed ups
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Photon Showers
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Synthetic Shower 
(BIB-AE model)

Synthetic Shower 
(WGAN model)

Geant4 Shower
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Ongoing work: Add angular conditioning (preliminary) 

80° 70°

60° 50°

40°

50°60°

80° 70°

GEANT4 GAN

40°

| Engin Eren
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Pion Showers: Linearity and Resolution

| 14th Annual Terascale Meeting | Peter McKeown | 23.11.2021
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Pion Showers: Results

| Engin Eren

accepted to ML4PS workshop (NeurIPS 2021) 

Overall good physics performance..

Both models offer significant speedups!
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Pion Showers: Computing Time for Inference

Speed-up of as much as four orders of magnitude on single core of Intel® 
Xeon® CPU E5-2640 v4 and NVIDIA® A100 for batch size 10000

| 14th Annual Terascale Meeting | Peter McKeown | 23.11.2021
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Pion dataset

Full Shower

Shower Core

• AHCAL Option

• Remove ECal from geometry

• Significant sparsity in data

• Use shower core

• Barely lose any hits

• 500k showers

• Fixed incident point and angle

• Irregular geometry projected into 25x25x48 
regular grid

• Uniform energy: 10-100 GeV

| Engin Eren
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Conditioning requirements for a general simulation

• Conditioning for a general calorimeter simulation:

• Energy

• Incidence point

• Two angles

• Polar angle: θ

• Azimuthal angle: ϕ

| 14th Annual Terascale Meeting | Peter McKeown | 23.11.2021

 
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Angular conditioning- Training data

• In Progress: condition generative networks on particle’s angle of incidence and energy

• Start simple:

• Fixed energy- 20 GeV

• Only vary polar angle in one direction- from 90°-30°

• Fixed particle type- photons

• Problem: How to make sure the full shower is contained?

• Extend the selected grid in y: shape (30,30,40) (z,x,y)

• Shift gun position

• Using 132k showers for training

| 14th Annual Terascale Meeting | Peter McKeown | 23.11.2021

MeV
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Angular conditioning- Some physics distributions

| 14th Annual Terascale Meeting | Peter McKeown | 23.11.2021

• Compare generated and GEANT4 distributions for a fixed angle of 60 degrees
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Angular conditioning- With a Constrainer Network

| 14th Annual Terascale Meeting | Peter McKeown | 23.11.2021

GEANT4 + GAN GEANT4 + GAN

GAN

GEANT4
GAN

GEANT4
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Angular linearity and resolution

| 14th Annual Terascale Meeting | Peter McKeown | 23.11.2021

• Good overall 
agreement
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Architectures: BIB-AE

| 14th Annual Terascale Meeting | Peter McKeown | 23.11.2021

More Details

● Unifies features of both GANs 
and VAEs

● Adversarial critic networks rather 
than pixel-wise difference a la 
VAEs

• Improved latent regularisation: 
additional critic and MMD term

• Post-Processor network: Improve 
per-pixel energies; second 
training

● Updates and improvements:

• Dual and resetting critics: prevent artifacts caused by sparsity

• Batch Statistics: prevent outliers/ mode collapse

• Multi-dimensional KDE sampling: better modeling of latent 
space 



Page 31

Kernel Density Estimation: BIB-AE

| 14th Annual Terascale Meeting | Peter McKeown | 23.11.2021

Buhmann et. al: Decoding Photons: 
Physics in the Latent Space of a BIB-
AE Generative Network, EPJ Web of 
Conferences 251, 03003 (2021)
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Pion correlations

| 14th Annual Terascale Meeting | Peter McKeown | 23.11.2021
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Angular conditioning- 60 degree shower shape distributions

| ML4Jets | Peter McKeown | 07.07.2021
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Angular conditioning- 80 degree other distributions

| ML4Jets | Peter McKeown | 07.07.2021


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Getting High: Generative Adversarial Network
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Conclusion
	Slide 15
	Backup
	Getting High: High Fidelity Simulation
	Slide 18
	Slide 19
	Angular conditioning- Preliminary results
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Conditioning requirements for a general simulation
	Angular conditioning- Training data
	Angular conditioning- Some physics distributions
	Angular conditioning- With a Constrainer Network
	Angular linearity and resolution
	Slide 30
	Slide 31
	Slide 32
	Angular conditioning- 60 degree shower shape distributions
	Angular conditioning- 80 degree other distributions

