Generative Models for Hadronic Shower Simulation

Erik Buhmann, Sascha Diefenbacher, <u>Engin Eren</u>, Frank Gaede, Daniel Hundhausen, Gregor Kasieczka, William Korcari, Anatolii Korol, Katja Krüger, Peter McKeown, Lennart Rustige

22.03.2022 DPG Spring Meeting

CLUSTER OF EXCELLENCE
QUANTUM UNIVERSE

The bottleneck in HEP Computing Resources

- MC simulation is computationally intensive
 - Calorimeters most intensive part of detector simulation
- Generative models potentially offer orders of magnitude speed up
- Amplify statistics of original data set
 - Generate new samples following distribution of original data
 - Significant less time per shower

The HEP Software Foundation., Albrecht, J., Alves, A.A. et al. A Roadmap for HEP Software and Computing R&D for the 2020s. Comput Softw Big Sci 3, 7 (2019).

From Photons to Pions

Photon showers

- Predominantly governed by EM interactions
- Compact structure

Pion showers

- Hadronic and EM interactions
- Complex structure
- Large event-to-event fluctuations

Hard to learn

DESY. | Engin Eren

Pion Dataset

- 500k showers generated with Geant4
- Fixed incident point and angle
- Projected onto 48 x 25 x 25
- Uniform energy: 10 GeV to 100 GeV

Hybrid simulation of ILD Hadron Calorimeter:

- Hits are recorded for scintillator and RPCs at the same time
- Here only scintillator option is used

Architectures: GAN and WGAN

Generative Adversarial Neural Network

- Original generative architecture applied for shower generation
- Discriminator and Generator play a minmax game

Real Data Output $X \quad \overline{Z} \quad \overline{S} \quad \overline{X} \quad \overline{C}$ Critic

Wasserstein GAN

- Alternative to classical GAN training
- Wasserstein-1 distance as loss with gradient penalty: improve stability
- Addition of an auxiliary constrainer networks for improved conditioning performance

Architectures: BIB-AE

Bounded-Information Bottleneck Autoencoder (BIB-AE)

- Unifies features of both GANs and Variational Autoencoders [*]
- Post-Processor network: Improve per-pixel energies; second training
- Multi-dimensional KDE sampling: better modeling of latent space [**]

[*] Voloshynovskiy et. al: **Information bottleneck through variational glasses**, arXiv:1912.00830

[**] Buhmann et. al: **Decoding Photons: Physics in the latent space of a BIB- AE Generative Network**, arXiv:2102.12491

Pion Shower Results I

Very good agreement of MIP peak for **BIB-AE** with Post-Processing!

Great agreement with Geant4

Too much hits for WGAN ~50 GeV BIB-AE is better

arXiv:2112.09709

Pion Shower Results II

The most important quantity to get it right

Pion Shower Results III

BIB-AE reproduces Geant4 distributions **WGAN** performance is not as great...

ILD Analysis Pipeline

Page 10

..with Generative Models

Pion Showers after Reconstruction

Very good agreement by WGAN in the middle incident energies.

Generation Time Particle Flow Calibration & Reconsturction Geant4 Digitization Very slow... Bottleneck! Noise $G(\Omega)$ (Neural Net) Labels Simulator Time / Shower [ms] Speed-up Hardware CPU Geant4 2684 ± 125 $\times 1$ Compare WGAN 47.923 ± 0.089 $\times 56$ BIB-AE 350.824 ± 0.574 $\times 8$ GPUWGAN $\times 10167$ 0.264 ± 0.002 BIB-AE 2.051 ± 0.005 $\times 1309$

Both models offer significant speedups!

Conclusion

Achieved

- Generative models hold promise for fast simulation of calorimeter showers with high fidelity
- Demonstrated high fidelity simulation of hadronic showers with generative models
 - Submitted to *Machine Learning: Science and Technology*

Ongoing Work

- Vary energy and angle simultaneously and study effect on performance
- Incorporate angular conditioning in more sophisticated architectures e.g. BIB-AE

Next Steps

Simulation of hadronic showers including HCAL and ECAL

Generated Shower by **BIB-AE**

Page 14 **DESY.** | Engin Eren

Backup

DESY. Page 15

Photon Showers

High fidelity of shower properties are achieved

DESY. | Engin Eren

Hardware	Simulator	Photons	
		Time/shower[ms]	Speed-up
CPU	Geant4	4082±170	×1
	WGAN	61.44±0.03	×66
	BIB-AE	95.98±0.08	×43
GPU	WGAN	3.93±0.03	×1039
	BIB-AE	1.60±0.03	×2551

Buhmann, et al.: Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed. Comput Softw Big Sci 5, 13 (2021)

Photon Showers

DESY. | Engin Eren

Ongoing work: Add angular conditioning (preliminary)

DESY. | Engin Eren

Pion Showers: Linearity and Resolution

Pion Showers: Results

accepted to ML4PS workshop (NeurIPS 2021)

Overall good physics performance..

Hardware	Simulator	Time / Shower [ms	s] Speed-up
CPU	Geant4	2684 ± 125	×1
	WGAN BIB-AE	47.923 ± 0.089 350.824 ± 0.574	×56 ×8
GPU	WGAN BIB-AE	0.264 ± 0.002 2.051 ± 0.005	×10167 ×1309

Both models offer significant speedups!

Pion Showers: Computing Time for Inference

Hardware	Simulator	Time / Shower [ms]	Speed-up
CPU	Geant4	2684 ± 125	$\times 1$
	WGAN BIB-AE	47.923 ± 0.089 350.824 ± 0.574	×56 ×8
GPU	WGAN BIB-AE	0.264 ± 0.002 2.051 ± 0.005	×10167 ×1309

Speed-up of as much as four orders of magnitude on single core of Intel[®] Xeon[®] CPU E5-2640 v4 and NVIDIA[®] A100 for batch size 10000

Pion dataset

Shower Core

- AHCAL Option
- Remove ECal from geometry
- Significant sparsity in data
 - Use shower core
 - Barely lose any hits
- 500k showers
- Fixed incident point and angle
- Irregular geometry projected into 25x25x48 regular grid
- Uniform energy: 10-100 GeV

DESY. | Engin Eren Page 24

Conditioning requirements for a general simulation

Conditioning for a general calorimeter simulation:

- Incidence point
- Two angles
 - Polar angle: θ
 - Azimuthal angle: φ

Angular conditioning- Training data

In Progress: condition generative networks on particle's angle of incidence and energy

- Start simple:
 - Fixed energy- 20 GeV
 - Only vary polar angle in one direction- from 90°-30°
 - Fixed particle type- photons
- Problem: How to make sure the full shower is contained?
 - Extend the selected grid in y: shape (30,30,40) (z,x,y)
 - Shift gun position

Using 132k showers for training

Angular conditioning- Some physics distributions

Compare generated and GEANT4 distributions for a fixed angle of 60 degrees

Angular conditioning- With a Constrainer Network

Angular linearity and resolution

 Good overall agreement

Architectures: BIB-AE

More Details

- Unifies features of both GANs and VAEs
- Adversarial critic networks rather than pixel-wise difference a la VAEs
- Improved latent regularisation: additional critic and MMD term
- Post-Processor network: Improve per-pixel energies; second training

- Updates and improvements:
 - Dual and resetting critics: prevent artifacts caused by sparsity
 - Batch Statistics: prevent outliers/ mode collapse
 - Multi-dimensional KDE sampling: better modeling of latent space

Kernel Density Estimation: BIB-AE

Buhmann et. al: **Decoding Photons: Physics in the Latent Space of a BIB-AE Generative Network**, EPJ Web of Conferences 251, 03003 (2021)

Pion correlations

GEANT4 - BIB-AE

GEANT4 - WGAN

Angular conditioning- 60 degree shower shape distributions

DESY. | ML4Jets | Peter McKeown | 07.07.2021 **Page 33**

Angular conditioning-80 degree other distributions

DESY. | ML4Jets | Peter McKeown | 07.07.2021 **Page 34**