

Dohun Kim FTX-Testbeam and Telescope (TBT) DPG Session T 94.7 Mar. 24. 2022

The DESY II Testbeam Facility

- DESY provides three testbeam lines (T21, T22 and T24) with single electrons
- Primary and secondary target
 - o Fiber target : carbon fiber
 - Bremsstrahlung photons
 - Conversion target : Cu, Al
- Enables choice of momentum
 - Current of the dipole magnet
- limits rate to a few 10 kHz
- How to increase rate?

The R-Weg

- Former Extraction beamline from DESY II to DORIS
- Injected Beam from LINAC is dumped after 2nd magnet cycle in DESY II
 - o Is it possible to upcycle this beam?
- Feasibility studies in order to test usability as a new test beam line
- Installation of equipments in 2021
 - Shutter, Interlock, power etc.
 - Radiation monitors

The R-Weg

- Direct extraction beam from DESY II into the R-Weg
- Beam is dumped at the R-Weg
- Radiation safety concerns
 - Interlock door is located far from beam dump
 - Labyrinth with two walls
 - Radiation monitors : PANDORAs
- PANDORA
 - Measuring dose of gammas and neutrons
 - Two detectors
 - Moderated ³He tube
 - Scintillator
 - Measurable energy
 - Gamma > 50 keV
 - Low energetic neutron < 20 MeV
 - High energetic neutron > 20 MeV

³He Tube

Time structure	Continuous	Burst
Type of radiation	Total response, no pileup	Delayed response only
High energy neutrons > 20 MeV	Scintillator: H(n,n)H → recoil protons	Scintillator: $^{12}C(n,p)^{12}B \rightarrow ^{12}C + \beta + \nu$
Low energy neutrons < 20 MeV	Moderated ³ He – tube: ³ He(n,p) ³ T	Moderated ³ He – tube: ³ He(n,p) ³ T delayed by TOF

Table 1 – Overview of the LB 6419 responses due to neutron radi

[Dose rate measurements around the elected extraction at FLASH, A. Leuschner]

Beam Operation at the R-Weg

- # Particles
 - Min.: 1x10⁸ e / bunch
 - Max.: 3x10¹⁰e / bunch
- Bunch length < 100 ps
- Rate of extraction: 6.25 Hz or 12.5 Hz
 - Current: 6.25 Hz
 - Concerns of stability for 12.5Hz
- Energy of beam Between 0.45 GeV and 6.3 GeV

Radiation Safety and Beam Stability

Radiation

- How many neutrons and gammas
 - Resonance of photonuclear reaction
- Measurement and simulation
 - PANDORA & FLUKA

Radiation Safety and Beam Stability

- Radiation
 - How many neutrons and gammas
 - Resonance of photonuclear reaction
 - Measurement and simulation
 - PANDORA & FLUKA
- Beam stability
 - Fluctuation of netz frequency
 - Fluctuation in the beam position
 - Mismatch between beam energy and kicker magnet strength
 - Beam structure
 - Exclude impact on normal operation stability
 - Beam only for a few hours per day

Radiation Safety and Beam Stability

- Radiation
 - How many neutrons and gammas
 - Measurement and simulation
- Beam stability
 - Fluctuation of netz frequency

 - Mismatch between beam energy and kicker magnet strength
 - Beam structure
 - Exclude impact on normal operation stability
 - Beam only for a few hours per day
- How to develop the R-Weg from an expert into a user facility?

For example: irradiation of Si-based sensors with high energy electrons

Simulating the R-Weg

- MC framework for the interaction and transport of particles in materials
 - Based on Fortran
 - Photo interactions > 100eV
 - Electron interactions > 1 keV
 - Low energy neutron interaction < 20 MeV

Applications

- Accelerator design
- Radiation protection (shielding, activation)
- Radiation damage or electronics effects

Compare to Doses During Beam Time

Beam Line

Compare to Doses During Beam Time

- PANDORA at the corner
- Simulated dose with the equipments
 - Photon: 880 ± 20 uSv/h
 - Neutron : 1750 ± 100 uSv/h
- Simulated dose with simple pipe
 - \circ Photon : 6 ± 0.5 uSv/h
 - Neutron : 12 ± 10 uSv/h
- Measured dose
 - ⊃ Photon : ~70 uSv/h
 - Neutron : ~800 uSv/h

- □ PANDORA at the dump
- Simulated dose with the equipments
 - o Photon: 10250± 50 uSv/h
 - Neutron : 900 ± 100 uSv/h
- Simulated dose with simple pipe
 - Photon: 1300 ± 20 uSv/h
 - \sim Neutron : 900 ± 100 uSv/h
- Measured dose
 - o Photon: ~160 uSv/h
 - Neutron : ~1000 uSv/h

12

Summary

- R-Weg provides a high rate e-beam
- High energy and high rate electron beam
 - High potential utility
 - Ongoing study of Radiation safety & beam stability
 - FLUKA simulation
- Simulation & measurement
 - Simulation results in an overestimation of photons
 - A lot of neutron at the corner
 - Beam hits flange
 - Lost of some beam
 - Activated toroid and flange

13

Backup

Beam-Parameters

- Electron-Beam
- Energy: 500 MeV
- Gaussian Distribution
 - o FWHM in x-, y-axis : 2cm
- Beam times: 1 h

DESY.

Several different cooling times

Compare to Doses during Beam time

x [cm]

Compare to Doses during Beam time

Extracting the Dose

Definition of PANDORA in GEO & Sensitivity of PANDORA

Distance between Dump & PANDORA

- o ~1.6m
- Volume
 - \circ 10³ cm²
- Defined material in FLUKA
 - Air
 - Possible : scintillator

Simulated how many Particles with which energy pass through this volume

Using convert factor the ambient dose is calculated

Using python code: sensitivity * ambient dose = expected ambient dose from PANDORA

[A FLUKA user-routine converting fluence into effective dose and ambient dose equivalent]

Definition of PANDORA in GEO & Sensitivity of PANDORA

Simulated how many Particles with which energy pass through this volume

Distance between Dump & PANDORA

o ~1.6m

Using convert factor
the ambient dose is calculated

- Volume
 - \circ 10³ cm²
- Defined material in FLUKA
 - Air
 - Possible : scintillator

Using python code: sensitivity * ambient dose = expected ambient dose from PANDORA

Energy vs Ambient Dose & Sensitivity

At the corner

Error : 2.2 uSv/h

Beam Line in FLAIR

Decay Cut for Residual Decay

Several different values of decay cut

- Generated number of photons by the high value of decay cu are smaller
- Neutrons disappear immediately afte extraction stops beam

Compared Doses During Cooling Down

