

Dohun Kim

DPG Session T 94.7 Mar. 24. 2022

Testbeam

- Testbeam
 - To verify the performance of sensors or devices using high energetic particle beam
 - Tracking using beam telescope
 - Enable to distinguish particle and noise
- Pixel sensor study as an example
 - Tracking efficiency & timing
 - Charge deposition
 - Charge sharing & cross-talk
 - etc.
- A lot of tracks are required for precise measurement
 - E.g. Efficiency in a single-pixel

MIMOSA Telescope at one of DESY Testbeam areas

A High Rate Testbeam Data Acquisition System and Characterization of High Voltage Monolithic Active Pixel Sensors

The DESY II Testbeam Facility

- DESY provides three testbeam lines (T21, T22 and T24) with single electrons
- Beam is generated by two targets
- Enables choice of momentum between 1 and 6 GeV
- Limits rate to a few 10 kHz
- Why to require high rate beam?
 - A lot of tracks for precise measurement
 - To irradiate sensors
 - To verify readout performances of sensors with high rate beam
 - E.g. beam monitor, beam counter
- How to increase the rate?

arXiv:1807.09328v2

The R-Weg

- Former transfer beamline from DESY II to DORIS
- Beam is transferred to PETRA or
- dumped after 2nd magnet cycle in DESY II
- Feasibility studies in order to test usability as a new test beam line with high rates
- Installation of equipment in 2021

Installed Instrumentation

- Radiation safety calibrations
 - Interlock door is located far from beam dump

Geb 20 (DESY II)

- Heater removes humidity
- Labyrinth with two walls
- Radiation monitors

Beam Operation at the R-Weg

- # Particles
 - o Min.: 1x108 e / bunch
 - Max.: 3x10¹⁰ e / bunch
- Bunch length < 100 ps
- Rate of extraction: 6.25 Hz or 12.5 Hz
 - Current: 6.25 Hz
 - Concerns of stability for 12.5 Hz
- Energy of beam between 0.45 GeV and 6.3 GeV
- Current beam shape and beam position are unstable

How to transform the R-Weg from an expert into a user facility?

- Precise references for
 - Radiation backgrounds
 - Beam stability
 - Electron dose over time
 - Beam counter

Radiation

- Radiation background
 - How many neutrons and gammas
 - Resonance of photonuclear reaction
 - Mostly from beam dump
 - Measurement
 - Radiation monitor : PANDORA
- PANDORA
 - Scintillator
 - Gamma > 50 keV
 - Low energetic neutron < 20 MeV
 - Moderated ³He tube
 - High energetic neutron > 20 MeV
- Simulation : FLUKA

Time structure	Continuous	Burst	
Type of radiation	Total response, no pileup	Delayed response only	
High energy neutrons > 20 MeV	Scintillator: $H(n,n)H \rightarrow recoil protons$	Scintillator: $^{12}C(n,p)^{12}B \rightarrow ^{12}C + \beta + \nu$	
Low energy neutrons < 20 MeV	Moderated 3 He – tube: 3 He(n,p) 3 T	Moderated ³ He – tube: ³ He(n,p) ³ T delayed by TOF	

Table 1 – Overview of the LB 6419 responses due to neutron radiation.

Simulating the R-Weg

- MC framework for the interaction and transport of particles in materials
 - Based on card system
 - Photon interactions > 100eV
 - Electron interactions > 1 keV
 - Thermal and high energy neutron interaction
- Using FLUKA
 - Radiation protection to measure dose
 - Magnetic field to study beam stability
 - Radiation damage to estimate irradiation

Compare to Doses During Beam Time

Compare to Doses During Beam Time

		At the corner	☐At the Dump
Simulated Dose [µSv/h]	Photon	880 ± 20	10250± 50
	Neutron	1750 ± 100	900 ± 100
Measured Dose [μSv/h]	Photon	~70	~160
	Neutron	~800	~1000

Summary

- R-Weg provides a high rate e-beam
 - High potential utility
 - Precise measurement & irradiation campaign
 - Ongoing study of radiation & beam stability
 - FLUKA simulation
- Simulation & measurement
 - Simulation results in an overestimation of photons
 - Working in progress
 - A lot of neutron at the corner

		At the corner	At the Dump
Simulated Dose [µSv/h]	Photon	880 ± 20	10250± 50
	Neutron	1750 ± 100	900 ± 100
Measured Dose [µSv/h]	Photon	~70	~160
	Neutron	~800	~1000

Backup

14

Beam Stability

- Beam stability
 - Fluctuation of mains frequency which synchronizes Magnetsystem
 - Fluctuation in the beam position
 - Deformation of the beam shape
 - Beam structure
 - Avoid impact on normal operation stability
 - Beam only for a few hours per day currently

Idea

• Uncertainty of angle

$$B[T] = \frac{E[GeV]}{0.3L[m]} = \frac{E}{0.3S}\theta \rightarrow \frac{\Delta\theta}{\theta} = \frac{\Delta E}{E}$$

Uncertainty of extraction time and energy

$$E(t) = Asin(2\pi f_{inj}t) + B$$

Where A, B are constant and f_{inj} is injection frequency

$$t_{ex} = \frac{N}{f_{net}} \rightarrow \frac{\Delta t_{ex}}{t_{ex}} = \frac{\Delta f_{net}}{f_{net}}$$
 where N is cycle of magnet per sec.

$$\Delta[sin(x)] = sin(x + \Delta x) - sin(x)$$

Beam-Parameters

- Electron-Beam
- Energy: 500 MeV
- Gaussian Distribution
 - o FWHM in x-, y-axis : 2cm
- Beam times: 1 h
- Several different cooling times

Compare to Doses during Beam time

x [cm]

Compare to Doses during Beam time

Extracting the Dose

Definition of PANDORA in GEO & Sensitivity of PANDORA

Distance between Dump & PANDORA

- o ~1.6m
- Volume
 - \circ 10³ cm²
- Defined material in FLUKA
 - o Air
 - Possible : scintillator

Simulated how many Particles with which energy pass through this volume

Using convert factor the ambient dose is calculated

Using python code: sensitivity * ambient dose = expected ambient dose from PANDORA

[A FLUKA user-routine converting fluence into effective dose and ambient dose equivalent]

Definition of PANDORA in GEO & Sensitivity of PANDORA

Simulated how many Particles with which energy pass through this volume

Distance between Dump & PANDORA Using convert factor the ambient dose is calculated

- Volume
 - \circ 10³ cm²
- Defined material in FLUKA

~1.6m

- Air
- Possible : scintillator

Using python code: sensitivity * ambient dose = expected ambient dose from PANDORA

Energy vs Ambient Dose & Sensitivity

origial

102

with sensitivity

100

Energy [MeV]

 10^{-2}

 10^{-1}

At the corner

origial

10²

with sensitivity

10-2

10²

10¹

10°

 10^{-1}

 10^{-2}

Photon

 10^{-1}

100

Energy [MeV]

10¹

Eq-Dose [uSv/h]

Beam Line in FLAIR

Decay Cut for Residual Decay

Several different values of decay cut

- Generated number of photons by the high value of decay cu are smaller
- Neutrons disappear immediately afte extraction stops beam

Compared Doses During Cooling Down

