Studies of Irradiated SiPMs with CMS HGCAL Tileboards

Latest Tests of the CMS HGCAL Tileboard Prototypes

Malinda de Silva, On behalf of the CMS Collaboration DPG Spring Meeting, Heidelberg 22nd March 2022

High Granularity for the High Luminosity LHC

Phase II Upgrade of the CMS End-Cap Calorimeter (HGCAL)

- HL-LHC will integrate ten times more luminosity than the LHC
- This poses significant challenges for radiation tolerance and event pileup on detectors
- Need to replace the ECAL crystals and HCAL scintillators of the CMS end cap calorimeter
- Proposed detector: a 5D (imaging) calorimeter using particle flow
- The active area of CMS endcap calorimeter (HGCAL) will consist of:
 - silicon detector section
 - scintillator section
- The Silicon and SiPM-on-Tile technologies were originally developed for e+ecolliders by the CALICE collaboration

Scintillator Component of the Hadronic Endcap Calorimeter

CMS HGCAL Tileboard and Front-End Electronics

 SiPM-on-tiles consist of individually wrapped plastic scintillator tiles placed on silicon photomultipliers (SiPM)

Scintillator Component of the Hadronic Endcap Calorimeter

CMS HGCAL Tileboard and Front-End Electronics

SiPM-on-tiles consist of individually wrapped plastic scintillator tiles placed on silicon photomultipliers (SiPM)

- The signals from SiPM-on-tiles are read out by the HGCROC front end electronic ASIC
 - ADC scale for lower gains
 - Time over Threshold (TOT) for higher gains
 - Time of Arrival (TOA) for timing information

Tileboards hold the SiPMs, scintillators, on-board electronics and LED system

Scintillator tiles on the front side of the tileboard

Tests with Irradiated SiPMs

Motivation

- Response of each SiPM-on-tile cell on the energy scale will be calibrated using the MIP signal
 - Radiation damage decreases scintillator light output and increases the SiPM dark current induced noise
 - Important to predict the noise of irradiated SiPMs including effects of read-out electronics (such as shaping or effective integration time)
- Irradiated SiPMs provide data on how the pedestal noise and current increase with accumulated neutron fluence

Tests with Irradiated SiPMs

Motivation

- Response of each SiPM-on-tile cell on the energy scale will be calibrated using the MIP signal
 - Radiation damage decreases scintillator light output and increases the SiPM dark current induced noise
 - Important to predict the noise of irradiated SiPMs including effects of read-out electronics (such as shaping or effective integration time)
- Irradiated SiPMs provide data on how the pedestal noise and current increase with accumulated neutron fluence
- Use tileboard TB1.2 to establish relation between current and noise
 - Contains **Hamamatsu HDR-2 SiPM of 2 mm² and 4 mm²** active area each with a **15µm pitch** and custom radiation hard packaging.
 - Irradiated to a fluence of 2x10¹² n/cm² at room temperature
 (Dark current at overvoltage=2V equivalent to expected end-of-life fluence at -30°C)

Irradiated MPPCs with R0 cast tiles

Relationship between Noise and Current passing through SiPM

Theoretical Background

- When using different temperatures (or light intensities) to vary SiPM noise for a fixed overvoltage, the current also increases as a function of SiPM noise
 - For a SiPM with negligible excess noise factor caused by after-pulsing and crosstalk

$$I = \frac{N \cdot G \cdot e}{\Delta t}$$

where I = current through SiPM

N = no. of fired pixel in time Δt

G = SiPM gain

e = electron charge

 Δt = time period

•
$$Q = \int I \cdot dt = N \cdot G \cdot e$$

where Q = charge collected by SiPM

• Since the noise scales as a function of \sqrt{N} :

noise RMS =
$$\sqrt{N} \cdot G \cdot e = \sqrt{I} \cdot \sqrt{G \cdot e \cdot \Delta t}$$

• That is, for a given overvoltage:

noise RMS $\propto \sqrt{SiPM}$ *current*

Setup for the Measurement of SiPM currents

With Climate Chamber

 The tileboard with the irradiated SiPMs is set up inside the climate chamber

Inputs:

- Fixed bias voltage (MPPC_BV) of 41.6V
- InputDAC parameter of HGCROC is used for finer bias
 voltage variations by up to +/- 0.5V (Vindac)
- Temperature of climate chamber is changed between -30°C and 30°C

Measurements:

- Current flow (Imppc) across the irradiated SiPMs
- Temperature of the SiPM (using PT1000 sensors 1 mm away from SiPMs)
- Pedestal mean and noise (RMS) in ADC counts
- Overvoltage (OV) is then calculated by taking into account all the factors mentioned above

Overvoltage of Irradiated SiPMs for different temperatures

Using overvolatage=2V adapter board

- One can sample points along an overvoltage of 2V in order to compare the corresponding noise level expected from a certain MPPC current:
 - Take points just before and after the overvoltage value required and use a linear interpolation to calculate value at overvoltage

Direct comparison of SiPM current and Noise RMS

at OV = 2V

- Currents passing through SiPMs of different sizes should affect the noise in a similar way
- This means that the noise levels should be same too
 - This is not seen in the results

Possible explanation:

- Temperature changes the internal working conditions of the SiPM (eg: change in excess noise factor)
- Different effective integration times due to different pulse shapes (as a consequence of different device capacitance)
- Unequal irradiation of the two SiPMs: highly unlikely

Setup for the Measurement of MPPC currents

Using an externally mounted LED

 In order to understand if the temperature change caused the change in SiPM conditions, an alternative setup was developed

Methodology:

- Tileboard is placed in a black box
- A constant light emitting LED was mounted underneath the irradiated channels on the tileboard
- The intensity of the LED can be varied by changing the voltage given to the LED
- The experiment was conducted at 25°C at an overvoltage of ~2V

Irradiated SiPMs

Direct comparison of MPPC current and Noise RMS

at OV = 2V

- The two independent setups yield very similar results
 - Effects from the changes in excess noise factor is negligible
- Noise vs current relationship seem to depend on the SiPM size
 - Remaining possible explanation: different effective integration times due to different pulse shapes

Summary

Studies of Irradiated SiPMs with CMS HGCAL Tileboards

- SiPM-on-Tile technology developed by the CALICE collaboration is being applied as part of the HGCAL upgrade
- In order to verify the relationship between the current passing through an irradiated SiPM and the pedestal noise (RMS), two setups were used
 - Using the change in overvoltage with temperature and InputDAC parameter of the HGCROC to obtain the data
 - Using an constantly illuminated LED to obtain the data
- Both methods yield the same relationships
 - For a given SiPM at a fixed overvoltage of a certain size, $noise\ RMS \propto \sqrt{MPPC\ current}$ holds true
 - SiPMs of different sizes however see different curves
 - Could be due to the differences in effective integration times due to different pulse shapes between the two SiPMs

Summary

Studies of Irradiated SiPMs with CMS HGCAL Tileboards

- SiPM-on-Tile technology developed by the CALICE collaboration is being applied as part of the HGCAL upgrade
- In order to verify the relationship between the current passing through an irradiated SiPM and the pedestal noise (RMS), two setups were used
 - Using the change in overvoltage with temperature and InputDAC parameter of the HGCROC to obtain the data
 - Using an constantly illuminated LED to obtain the data
- Both methods yield the same relationships
 - For a given SiPM at a fixed overvoltage of a certain size, noise $RMS \propto \sqrt{MPPC\ current}$ holds true
 - SiPMs of different sizes however see different curves
 - Could be due to the differences in effective integration times due to different pulse shapes between the two SiPMs

THANK YOU FOR YOUR ATTENTION!

BACKUP

DESY. Page 15

Comparison SiPM current and Pedestal

Using data from irradiated SiPMs

- Plot compares current passing through SiPM and mean calculated from pedestal.
- Both measure the current before and after DC-DC conversion
 - Relationship must be linear regardless of the temperature and overvoltage
 - For a given SiPM with fixed HGCROC parameters, it is possible to use the pedestal values as an alternative for SiPM current

Breakdown Voltage Determination with Irradiated SiPMs

I-V curves for irradiated SiPMs

- Breakdown voltages used so far were Hamamatsu measured voltages before irradiation
- Goal: See if the voltage measured via I-V curve for irradiated SiPM is similar to the Hamamatsu measured value

- Hamamatsu measured Vbr :
- for $2mm^2 SiPM = 37.82 V (-0.50V)$

- for $4\text{mm}^2 \text{ SiPM} = 38.16 \text{ V} (-0.53\text{V})$
- 0.5V difference was expected due to differences in Vbr definitions and measuring methods

OUTLOOK: Tileboard Tester Data Acquisition System

Introduction

- Data acquisition by a Xilinx Zynq-based module custom-produced to communicate with the tileboards (tileboad tester DAQ)
 - Parallel data taking and readout in final CMS/LHC rate
 - Sends necessary commands needed to
 - Adjust and read voltages including the SiPM bias voltages.
 - Read the outputs from the PT1000 temperature sensors on board the tileboards
 - Configure the HGCROC necessary for data acquisition
 - Raw data is saved as a .raw file and a ROOT file alongside a log file containing the outputs of all slow control parameters such as on-board voltages and temperatures.
 - Has opened the possibilities for simultaneous data taking from multiple tileboards
 - Possible applications: cosmic test stand or a stack for shower studies at testbeams

HGCROC(v2) Front End Read Out ASIC

Introduction

- HGCROC(v2): Latest prototype of the front end read out ASIC to be used in the CMS HGCAL
 - CMOS 130 nm (TSMC) technology
- Two versions:
 - Silicon version: HGCROC
 - SiPM version: H2GCROC
 - Additional current conveyor for amplification
- Integrates up to 72 channels to read out
- Measurements:
 - Charge:
 - ADC (Pulse Amplitude)
 - Time over Threshold (TOT)
 - Timing:
 - Time of Arrival (TOA)

Charge Measurement with HGCROCv2

Low and High Gain Modes

- Pulse amplitude before saturation: ADC measurement
- Pulse amplitude after saturation : TOT measurement

Measurement using external charge injection into the HGCROC channel 45

Pulse Amplitude Extraction using a Template Fit

- HGCROC samples the signal at 40 MHz corresponding to the collision frequency
- DESY beam is non-synchronous to the system. Therefore pulse maxima need to be extracted offline
- Pulse amplitude is reconstructed using an event-by-event template fit to multiple samples
 - 6 points sampled at 25 ns rate per event are fitted using a skewed-Gaussian fit with fixed std. dev. and skewness.
- The most probable value (MPV) is extracted from the resulting pulse amplitude spectra using a fit of a Landau distribution convoluted with a Gaussian

Overview of SiPM Gain Analysis

SiPM Gain measurement

- Multi-gaussian function fitting peaks at constant intervals determines the SiPM gain
- LED data is taken for multiple phases (for phases=0 to 15) and the highest gain value is chosen as the correct gain
- Linear extrapolation is used to determine the SiPM gain at OV=2V using 3V, 4V and 6V data

• To characterize the optical performance of the SiPM-Tile system, the signal (MPV) is normalised to the pulse height of a single fired SiPM pixel (SiPM gain) → Light Yield [photon equivalent units (p.e.)]

$$Light Yield = \frac{MIP MPV}{SiPM gain}$$

Comparison of Data taken with different Tileboards and DAQs

Comparison of TB2 data from February 2022

- Performance comparison with different tileboards and DAQs
 [note that both tiles and SiPMs are different despite the same channel number, so some deviation is to be expected]
 - For OV = 2V : negligible difference
 - For OV = 4V : 2-10% difference

SiPM-on-Tile technology

Working Principle

- SiPMs or MPPCs consist of 1000s of single photon avalanche diodes (SPAD)
- Each diode is sensitive to single photons

- Charged particles passing through the wrapped tiles produce scintillation photons
- These photons are reflected back onto the SiPM with the help of the reflective foil wrapping
- On-board electronics (including the HGCROC's current conveyor) amplifies signal and converts the obtained charge into digital signals
 - ADC scale for lower gains
 - Time over Threshold (TOT) for higher gains
 - Time of Arrival (TOA) for timing information