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podio::Frame - main purposes

• Act as a container that aggregates all relevant data
• Offer an easy to use and thread safe interface to access those data

• (Immutable) read access to collections and meta data
• Insert (via ”destructive move”) collections and meta data
• Once inserted into the Frame it is immutable by design and no mutable access
is granted afterwards

• Define an interval of validity or category (e.g. Event, Run, LumiSection) for the
contained data
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podio::Frame - why Frame and not Event

• The Frame is a more general concept
• Functionality for reading, e.g. a Run is essentially the same as for reading an
Event, the two differ mainly by their (data) content

• Having a concept of “lifetime” or “interval of validity” has some nice
properties for dealing with meta data

• We can probably not exhaustively list experiment differences w.r.t. naming
different things, but we can offer the necessary I/O functionality

• Related to the meta data discussion, since we cannot foresee all the levels of
metadata that are necessary

• Also works for experiments that have no clear notion of an “event” but rather
deal with, e.g. read-out frames
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Meta data - a definition

• meta data is all data that does not fit into either the EDM or the
podio::UserDataCollection

• Maybe extra data would be a better name, as it will probably be used to store
additional data as wall as “true” meta data

• Plus the distinction between meta data and extra data is a bit murky

• Usually implemented as some sort of generic key - value store
• Ideally there aren’t too many use cases for this in the end with podio based
EDMs

• Adding new datatypes is easy in podio
• Basis in podio is podio::GenericParameters

• Offers a key - value storage for int, float and std::string as well as
vectors thereof

• (Plan to) not directly expose via the Frame interface
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General functionality of a Frame

• Access to data read from file
• Possibility to add new data
• Ownership of the contained data
• Support for different I/O libraries
• Potential support for different policies with a single interface

• Lazy unpacking (prepareAfterRead and potential decompression) of
collections

• How to handle missing collections
• (Key / name) collision behavior on collection insertion

• Thread safe for “general use”
• Inserting and reading from multiple threads will / should not lead to a race
condition

• Probably via mutexes + locking
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podio::Frame - in memory interface

struct Frame {
/// Get a const reference to a stored collection by name
template<typename CollT>
const CollT& get(std::string name) const;

/// Put a colleciton into the collection and get a const
/// ref back. coll needs to be moved into the Frame so
/// that it will be invalidated outside
template<typename CollT>
const CollT& put(CollT&& coll, std::string name);

/// Get a const reference to the meta data stored under
/// the given key
template<typename T>
const T& getMetaData(std::string key) const;

/// Store a COPY of the value as meta data with the given
/// key. For symmetry with the put method return a const
/// ref to the newly stored value
template<typename T>
const T& putMetaData(T val, std::string key);

};

*Ommitting a few const& for the std::string arguments as
well as some enable_if machinery to enforce the destruc-
tive move

• The basic interface is rather simple
• The major points are

• collections have to be moved
into the Frame and become
invalid after a call to put

• It is not possible to get mutable
data access

• Some additional functionality is
needed for giving a Writer
access to the stored data

*Method naming obviously up for discussion
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General I/O philosophy and assumptions

• I/O is assumed to be single threaded
• Blocks until all requested data is written / read

• Readers proivde the data for a “complete” frame in (almost) arbitrary format
• Can also be a subset of all collections
• Combination of many frames (e.g. pile up mixing) into one not part of core podio
• No “lazy reading”, i.e. once the data has left the reader, the frame is detached
from it

• Writers request buffers to be written from the frame
• Does not take ownership of these buffers
• There can be multiple writers operating on one frame

• podio provides the necessary building blocks for more complex workflows
• E.g. asynchronous reading / writing
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I/O in diagrams
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podio::Frame - interface for I/O

struct Frame {
/// Constructor taking some raw data provided by an
/// external source
template<typename RawDataT>
Frame(std::unique_ptr<RawDataT> rawData);

/// Get all CollectionBuffers to be written for the
/// selected collections. Making sure all desired
/// collections are put into the correct format before
/// (i.e. prepared for write)
std::vector<const podio::CollectionBuffers*>
getBuffersForWrite(std::vector<std::string> names) const;

/// Get the meta data container for writing
const podio::GenericParameters& getMetaDataForWrite() const;

};

*Method naming up for discussion

• A Frame is constructible from
(almost) arbitrary raw data

• Can be different for each I/O
system

• Needs to provide access to the
buffers of a desired collection

• A writer can request (a subset) of
collection buffers to write

• Frame takes care of preparing
these buffers

• Frame needs to be kept alive
until writing all buffers is done
→ writer interface not
concerned with this
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The user perspective (single threaded)
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TrackCollection doTracking(const TrackerHitCollection& hits);
VertexCollection doVertexing(const TrackCollection& tracks);

podio::ROOTReader reader("hits.root"); // Open a file to read from
podio::SIOWriter writer("reco_tracks.sio"); // Open a file to write to

for (size_t i = 0; i < reader.getNEntries("event"); ++i) { // At this low level we need to know the category
// that we want to read

auto event = podio::Frame(reader.readNextEntry("event")); // Create an event with the contents from the file

const auto& hits = event.get<TrackerHitCollection>("hits"); // Get hits from event and
auto tmpTracks = doTracking(hits); // do the tracking

const auto& tracks = event.put(std::move(tmpTracks), "tracks"); // Store the tracks by moving them into the event
// Retain a const reference for later use
// tmpTracks now in "valid but undefined state"
// and is no longer usable

const auto& vertices = event.put(doVertexing(tracks), "vertices"); // Temporaries don't need the explicit move

auto recos = ReconstructedParticleCollection();
event.put(std::move(recos), "recos"); // Not keeping the const ref is also fine

writer.writeEntry(event, "event"); // Pass (a const ref to) the event to the writer
// Also the writer needs to know the category

} // frame goes out of scope and all data is destroyed



General functionality overview summary

• Frame acts as owning container of data and defines an /interval of validity/
(or category) for this data

• Takes ownership of inserted data
• Only gives immutable access to stored data

• Readers provide (almost) arbitrary raw data from which a Frame is
constructed

• The reader relinquishes ownership once the raw data leaves its control
• No strict connection between a reader and a Frame

• The writers only get (references to) the buffers of data that should be written
• Have to make sure that the write operation is done by the time the Frame is
destroyed

• podio provides the main building blocks for constructing more complex
workflows, but it will not offer “off-the-shelf” solutions for those
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Collection meta data

• Collection meta data should be easily accessible from the collection directly
• Currently have to go through the EventStore

• In LCIO each collection owns their own meta data container
• Written separately for each event

• In the Frame approach all meta data is foreseen to be owned by a Frame
• What is the correct lifetime for collection meta data?

• Do we want the distinction between “true” meta data and extra data with
potentially vastly different lifetimes?

• Simplest solution is probably to somewhat follow the LCIO approach
• Collection meta data lifetime == lifetime of the frame that containing collection
• Pass requests from collection to frame and adapt keys under the hood

• Need to touch collection interface in any case
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Frame policies

• We will not be able to satisfy everybody with one Frame implementation
• Offer a few (selected) customization points that allow podio users to alter
some of the Frame runtime behavior

• Foresee that users want to define their own policies
• Possible customization points could be

• The unpacking behavior - lazy (on demand) vs. eager at Frame construction
• Collision handling on insert - throw an exception vs. overwrite existing vs ...
• Handling of misssing data - throw an exception vs. default vs ...
• Locking policy - e.g. have no locking at all if only used on a single thread

• Customization points should be as orthogonal to each other as possible
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Frame implementation basics

TODO
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RawDataT requirements

TODO
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LCIO workflows / capabilities

• LCIO has the LCEvent that gives access to
• The data stored in collections (defined by the EDM)
• Some meta data (e.g. run & event number, weight, ...)
• Meta/extra data in form of LCParameters

• LCParameters are essentially equivalent to podios GenericParameters
• Each collection has an instance of their own LCParameters attached

→ collection meta data has a lifetime of “event”
• Additionally there is the possibility to store collections of
LCGenericObjects

• Indexed based access to vectors of int, float, double
• LCIO also has an LCRunHeader with some meta data and LCParameters
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https://ilcsoft.desy.de/LCIO/current/doc/doxygen_api/html/classEVENT_1_1LCEvent.html
https://ilcsoft.desy.de/LCIO/current/doc/doxygen_api/html/classEVENT_1_1LCParameters.html
https://ilcsoft.desy.de/LCIO/current/doc/doxygen_api/html/classEVENT_1_1LCGenericObject.html
https://ilcsoft.desy.de/LCIO/current/doc/doxygen_api/html/classEVENT_1_1LCRunHeader.html


Current podio vs. LCIO

• Overview table over the non-EDM possibilities of the two libraries
Use case LCIO podio
(arbitrary) user data LCGenericObject UserDataCollection
key-value @event LCParameters of LCEvent GenericParameters (event meta data)
key-value @collection LCParameters of collections GenericParameters (collection meta data)
key-value @run LCParameters of LCRunHeader GenericParameters (run meta data)

• In podio all the different levels of metadata are currently exposed via the
EventStore

• In both cases the users get direct access to the whole LCParameters /
GenericParameters object

• Enforcing immutability would be extremely restricting for the users
• Without immutability constraints → sequence point in multithreaded contexts
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Some object sizes for overhead considerations

• Size of some internals of the GenericParameters as well as the probably
largest edm4hep data type

object size / bytes
std::map<K, V> 46
std::unordered_map<K, V> 56
podio::GenericParameters 46 * 4 or 56 * 4
edm4hep::ReconstructedParticleData 116
edm4hep::ReconstructedParticleObj 116 + 68
edm4hep::ReconstructedParticleCollectionData 280
edm4hep::ReconstructedParticleCollection 280 + 16
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”Classic” polymorphism

“Library side”
• Defines an abstract interface

struct IReader {
virtual std::string read() = 0;

};

“User side”
• Implementations have to inherit from
IReader

struct ROOTReader : public IReader {
std::string read() override { return "root"; }

};

struct SIOReader : public IReader {
std::string read() override { return "sio"; }

};

• Usage requires pointer semantics

std::vector<std::unique_ptr<IReader>> readers;
readers.push_back(std::make_unique<ROOTReader>());
readers.push_back(std::make_unique<SIOReader>());

for (auto&& r : readers) std::cout << r->read();
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Type erasure

“Library side”
• Essentially internalizes the abstract
base interface

class Reader {
struct ReaderConcept {

virtual std::string read() = 0;
};

template<typename R>
struct ReaderModel final : public ReaderConcept {

ReaderModel(R r) : m_reader(r) {}
std::string read() final { return m_reader.doRead(); }
R m_reader;

};

std::unique_ptr<ReaderConcept> m_self;
public:

template<typename R>
Reader(R r) :

m_self(std::make_unique<ReaderModel<R>>(r)) {}

std::string read() { return m_self->read(); }
};

“User side”
• Implementations are free standing
classes that have to fullfill the
interface required by the
ReaderModel

struct ROOTReader {
std::string doRead() { return "root"; }

};

struct SIOReader {
std::string doRead() { return "sio"; }

};

• Can be used with value semantics

std::vector<Reader> readers;
readers.emplace_back(ROOTReader{});
readers.emplace_back(SIOReader{});

for (auto& r : readers) std::cout << r.read();

February 17, 2022 T.Madlener 5


	Appendix

