
Frame class in podio
(developing slides)

Thomas Madlener
February 17, 2022



podio::Frame - main purposes

• Act as a container that aggregates all relevant data
• Offer an easy to use and thread safe interface to access those data

• (Immutable) read access to collections and meta data
• Insert (via ”destructive move”) collections and meta data
• Once inserted into the Frame it is immutable by design and no mutable access
is granted afterwards

• Define an interval of validity or category (e.g. Event, Run, LumiSection) for the
contained data

February 17, 2022 T.Madlener 1



podio::Frame - why Frame and not Event

• The Frame is a more general concept
• Functionality for reading, e.g. a Run is essentially the same as for reading an
Event, the two differ mainly by their (data) content

• Having a concept of “lifetime” or “interval of validity” has some nice
properties for dealing with meta data

• We can probably not exhaustively list experiment differences w.r.t. naming
different things, but we can offer the necessary I/O functionality

• Related to the meta data discussion, since we cannot foresee all the levels of
metadata that are necessary

• Also works for experiments that have no clear notion of an “event” but rather
deal with, e.g. read-out frames

February 17, 2022 T.Madlener 2



Meta data - a definition

• meta data is all data that does not fit into either the EDM or the
podio::UserDataCollection

• Maybe extra data would be a better name, as it will probably be used to store
additional data as wall as “true” meta data

• Plus the distinction between meta data and extra data is a bit murky

• Usually implemented as some sort of generic key - value store
• Ideally there aren’t too many use cases for this in the end with podio based
EDMs

• Adding new datatypes is easy in podio
• Basis in podio is podio::GenericParameters

• Offers a key - value storage for int, float and std::string as well as
vectors thereof

• (Plan to) not directly expose via the Frame interface

February 17, 2022 T.Madlener 3



General functionality of a Frame

• Access to data read from file
• Possibility to add new data
• Ownership of the contained data
• Support for different I/O libraries
• Potential support for different policies with a single interface

• Lazy unpacking (prepareAfterRead and potential decompression) of
collections

• How to handle missing collections
• (Key / name) collision behavior on collection insertion

• Thread safe for “general use”
• Inserting and reading from multiple threads will / should not lead to a race
condition

• Probably via mutexes + locking
February 17, 2022 T.Madlener 4



podio::Frame - in memory interface

struct Frame {
/// Get a const reference to a stored collection by name
template<typename CollT>
const CollT& get(std::string name) const;

/// Put a colleciton into the collection and get a const
/// ref back. coll needs to be moved into the Frame so
/// that it will be invalidated outside
template<typename CollT>
const CollT& put(CollT&& coll, std::string name);

/// Get a const reference to the meta data stored under
/// the given key
template<typename T>
const T& getMetaData(std::string key) const;

/// Store a COPY of the value as meta data with the given
/// key. For symmetry with the put method return a const
/// ref to the newly stored value
template<typename T>
const T& putMetaData(T val, std::string key);

};

*Ommitting a few const& for the std::string arguments as
well as some enable_if machinery to enforce the destruc-
tive move

• The basic interface is rather simple
• The major points are

• collections have to be moved
into the Frame and become
invalid after a call to put

• It is not possible to get mutable
data access

• Some additional functionality is
needed for giving a Writer
access to the stored data

*Method naming obviously up for discussion

February 17, 2022 T.Madlener 5



General I/O philosophy and assumptions

• I/O is assumed to be single threaded
• Blocks until all requested data is written / read

• Readers proivde the data for a “complete” frame in (almost) arbitrary format
• Can also be a subset of all collections
• Combination of many frames (e.g. pile up mixing) into one not part of core podio
• No “lazy reading”, i.e. once the data has left the reader, the frame is detached
from it

• Writers request buffers to be written from the frame
• Does not take ownership of these buffers
• There can be multiple writers operating on one frame

• podio provides the necessary building blocks for more complex workflows
• E.g. asynchronous reading / writing

February 17, 2022 T.Madlener 6



I/O in diagrams

Frame

RawDataT
ROOTRawDataROOTReader provides

SIORawDataSIOReader provides Frame

RawDataT

construct from

construct from

single threaded potentially multihreaded
• Reading raw data and
constructing a frame from it is
a two step process

• Makes it possible to do
unpacking on a separate
thread

• Writing can happen with multiple threads, e.g.
each writer on its own thread

• Writers can write different contents, e.g. SIM &
RECO into separate files

• Need one writer “per content”

Frame

ROOTWriter

SIOWriter

re
ques

ts 

buffe
rs 

fro
m

requests 

buffers from

potentially multihreaded

February 17, 2022 T.Madlener 7



podio::Frame - interface for I/O

struct Frame {
/// Constructor taking some raw data provided by an
/// external source
template<typename RawDataT>
Frame(std::unique_ptr<RawDataT> rawData);

/// Get all CollectionBuffers to be written for the
/// selected collections. Making sure all desired
/// collections are put into the correct format before
/// (i.e. prepared for write)
std::vector<const podio::CollectionBuffers*>
getBuffersForWrite(std::vector<std::string> names) const;

/// Get the meta data container for writing
const podio::GenericParameters& getMetaDataForWrite() const;

};

*Method naming up for discussion

• A Frame is constructible from
(almost) arbitrary raw data

• Can be different for each I/O
system

• Needs to provide access to the
buffers of a desired collection

• A writer can request (a subset) of
collection buffers to write

• Frame takes care of preparing
these buffers

• Frame needs to be kept alive
until writing all buffers is done
→ writer interface not
concerned with this

February 17, 2022 T.Madlener 8



The user perspective (single threaded)

February 17, 2022 T.Madlener 9

TrackCollection doTracking(const TrackerHitCollection& hits);
VertexCollection doVertexing(const TrackCollection& tracks);

podio::ROOTReader reader("hits.root"); // Open a file to read from
podio::SIOWriter writer("reco_tracks.sio"); // Open a file to write to

for (size_t i = 0; i < reader.getNEntries("event"); ++i) { // At this low level we need to know the category
// that we want to read

auto event = podio::Frame(reader.readNextEntry("event")); // Create an event with the contents from the file

const auto& hits = event.get<TrackerHitCollection>("hits"); // Get hits from event and
auto tmpTracks = doTracking(hits); // do the tracking

const auto& tracks = event.put(std::move(tmpTracks), "tracks"); // Store the tracks by moving them into the event
// Retain a const reference for later use
// tmpTracks now in "valid but undefined state"
// and is no longer usable

const auto& vertices = event.put(doVertexing(tracks), "vertices"); // Temporaries don't need the explicit move

auto recos = ReconstructedParticleCollection();
event.put(std::move(recos), "recos"); // Not keeping the const ref is also fine

writer.writeEntry(event, "event"); // Pass (a const ref to) the event to the writer
// Also the writer needs to know the category

} // frame goes out of scope and all data is destroyed



General functionality overview summary

• Frame acts as owning container of data and defines an /interval of validity/
(or category) for this data

• Takes ownership of inserted data
• Only gives immutable access to stored data

• Readers provide (almost) arbitrary raw data from which a Frame is
constructed

• The reader relinquishes ownership once the raw data leaves its control
• No strict connection between a reader and a Frame

• The writers only get (references to) the buffers of data that should be written
• Have to make sure that the write operation is done by the time the Frame is
destroyed

• podio provides the main building blocks for constructing more complex
workflows, but it will not offer “off-the-shelf” solutions for those

February 17, 2022 T.Madlener 10



February 17, 2022 T.Madlener 10

(Technical)
Details



Collection meta data

• Collection meta data should be easily accessible from the collection directly
• Currently have to go through the EventStore

• In LCIO each collection owns their own meta data container
• Written separately for each event

• In the Frame approach all meta data is foreseen to be owned by a Frame
• What is the correct lifetime for collection meta data?

• Do we want the distinction between “true” meta data and extra data with
potentially vastly different lifetimes?

• Simplest solution is probably to somewhat follow the LCIO approach
• Collection meta data lifetime == lifetime of the frame that containing collection
• Pass requests from collection to frame and adapt keys under the hood

• Need to touch collection interface in any case

February 17, 2022 T.Madlener 11



Frame policies

• We will not be able to satisfy everybody with one Frame implementation
• Offer a few (selected) customization points that allow podio users to alter
some of the Frame runtime behavior

• Foresee that users want to define their own policies
• Possible customization points could be

• The unpacking behavior - lazy (on demand) vs. eager at Frame construction
• Collision handling on insert - throw an exception vs. overwrite existing vs ...
• Handling of misssing data - throw an exception vs. default vs ...
• Locking policy - e.g. have no locking at all if only used on a single thread

• Customization points should be as orthogonal to each other as possible

February 17, 2022 T.Madlener 12



Frame implementation basics

TODO

February 17, 2022 T.Madlener 13



RawDataT requirements

TODO

February 17, 2022 T.Madlener 14



February 17, 2022 T.Madlener 0

Supplementary
Material



LCIO workflows / capabilities

• LCIO has the LCEvent that gives access to
• The data stored in collections (defined by the EDM)
• Some meta data (e.g. run & event number, weight, ...)
• Meta/extra data in form of LCParameters

• LCParameters are essentially equivalent to podios GenericParameters
• Each collection has an instance of their own LCParameters attached

→ collection meta data has a lifetime of “event”
• Additionally there is the possibility to store collections of
LCGenericObjects

• Indexed based access to vectors of int, float, double
• LCIO also has an LCRunHeader with some meta data and LCParameters

February 17, 2022 T.Madlener 1

https://ilcsoft.desy.de/LCIO/current/doc/doxygen_api/html/classEVENT_1_1LCEvent.html
https://ilcsoft.desy.de/LCIO/current/doc/doxygen_api/html/classEVENT_1_1LCParameters.html
https://ilcsoft.desy.de/LCIO/current/doc/doxygen_api/html/classEVENT_1_1LCGenericObject.html
https://ilcsoft.desy.de/LCIO/current/doc/doxygen_api/html/classEVENT_1_1LCRunHeader.html


Current podio vs. LCIO

• Overview table over the non-EDM possibilities of the two libraries
Use case LCIO podio
(arbitrary) user data LCGenericObject UserDataCollection
key-value @event LCParameters of LCEvent GenericParameters (event meta data)
key-value @collection LCParameters of collections GenericParameters (collection meta data)
key-value @run LCParameters of LCRunHeader GenericParameters (run meta data)

• In podio all the different levels of metadata are currently exposed via the
EventStore

• In both cases the users get direct access to the whole LCParameters /
GenericParameters object

• Enforcing immutability would be extremely restricting for the users
• Without immutability constraints → sequence point in multithreaded contexts

February 17, 2022 T.Madlener 2



Some object sizes for overhead considerations

• Size of some internals of the GenericParameters as well as the probably
largest edm4hep data type

object size / bytes
std::map<K, V> 46
std::unordered_map<K, V> 56
podio::GenericParameters 46 * 4 or 56 * 4
edm4hep::ReconstructedParticleData 116
edm4hep::ReconstructedParticleObj 116 + 68
edm4hep::ReconstructedParticleCollectionData 280
edm4hep::ReconstructedParticleCollection 280 + 16

February 17, 2022 T.Madlener 3



”Classic” polymorphism

“Library side”
• Defines an abstract interface

struct IReader {
virtual std::string read() = 0;

};

“User side”
• Implementations have to inherit from
IReader

struct ROOTReader : public IReader {
std::string read() override { return "root"; }

};

struct SIOReader : public IReader {
std::string read() override { return "sio"; }

};

• Usage requires pointer semantics

std::vector<std::unique_ptr<IReader>> readers;
readers.push_back(std::make_unique<ROOTReader>());
readers.push_back(std::make_unique<SIOReader>());

for (auto&& r : readers) std::cout << r->read();

February 17, 2022 T.Madlener 4



Type erasure

“Library side”
• Essentially internalizes the abstract
base interface

class Reader {
struct ReaderConcept {

virtual std::string read() = 0;
};

template<typename R>
struct ReaderModel final : public ReaderConcept {

ReaderModel(R r) : m_reader(r) {}
std::string read() final { return m_reader.doRead(); }
R m_reader;

};

std::unique_ptr<ReaderConcept> m_self;
public:

template<typename R>
Reader(R r) :

m_self(std::make_unique<ReaderModel<R>>(r)) {}

std::string read() { return m_self->read(); }
};

“User side”
• Implementations are free standing
classes that have to fullfill the
interface required by the
ReaderModel

struct ROOTReader {
std::string doRead() { return "root"; }

};

struct SIOReader {
std::string doRead() { return "sio"; }

};

• Can be used with value semantics

std::vector<Reader> readers;
readers.emplace_back(ROOTReader{});
readers.emplace_back(SIOReader{});

for (auto& r : readers) std::cout << r.read();

February 17, 2022 T.Madlener 5


	Appendix

