Azimuthal correlations in dijet events at NLO with the parton branching method CPHI-2022

Aron Mees van Kampen

on behalf of the CASCADE developer team & participants of the Monte Carlo school: PB TMDs with CASCADE

University of Antwerp, Belgium

February 24, 2022

Introduction

Azimuthal correlation of dijets at the LHC: $\Delta \phi_{12}$ Abdulhamid et al. [Eur.Phys.J.C 82 (2022) 1, 36]

- PP collisions @13 TeV
- High p_T of leading jet(s): $p_T^{\text{leading}} > 200 \text{ GeV}$
- fixed order calculation not sufficient

CMS figure of jets in back-to-back $\Delta \phi$ region

Calculation of $\Delta \phi_{12}$:

- **1** LO: only 2 jets ($\Delta \phi = \pi$)
- **2** NLO: middle $\Delta \phi$ region
- **l** Resummation approach ($\Delta \phi \rightarrow \pi$)

Resummation in CSS manner by Sun, Yuan, Yuan [Phys. Rev. D 92, 094007 (2015)] Possible factorization breaking effects towards $\Delta \phi \rightarrow \pi$

$\Delta \phi_{12}$ with high p_T dijets using Parton Branching

General purpose event generators results

Tunes needed!

Deviations up to 50% in medium $\Delta \phi$ & up to 10% in $\Delta \phi \rightarrow \pi$ region

Experimental uncertainty smaller than theoretical deviations

CMS coll. [Eur. Phys. J. C 78 (2018) 566]

Parton branching formalism for TMD evolution very suitable!

- Initial parton radiation: moves $\delta(\Delta \phi_{12} \pi)$ -peak
- Resums large logarithms
- Matching to NLO matrix elements

The Parton Branching (PB) method

The **parton branching (PB) method** provides evolution equations for TMDs $\tilde{\mathcal{A}}_a(x, k_t^2, \mu^2)$:

$$\begin{split} \tilde{\mathcal{A}}_{a}(x,k_{t}^{2},\mu^{2}) &= \Delta_{a}(\mu^{2},\mu_{0}^{2})\tilde{\mathcal{A}}_{a}(x,k_{t,0}^{2},\mu_{0}^{2}) + \\ &+ \sum_{b} \left[\int \frac{d^{2}\mu'}{\pi\mu'^{2}} \int_{x}^{z_{M}(\mu')} dz \Theta(\mu^{2}-\mu'^{2})\Theta(\mu'^{2}-\mu_{0}^{2}) \right. \\ &\times \frac{\Delta_{a}(\mu^{2},\mu_{0}^{2})}{\Delta_{a}(\mu'^{2},\mu_{0}^{2})} P_{ab}^{(R)}(\alpha_{s}(q_{t}),z)\tilde{\mathcal{A}}_{b}\left(\frac{x}{z},\underbrace{k_{t,b}-q_{t,c}}_{k_{t,a}},\mu'^{2}\right) \right] \end{split}$$

Hautmann et al. [JHEP 01 (2018) 070]

$$\begin{array}{ccc} x_a p^+, k_{t,a} & a \\ \\ z = x_a / x_b & \underline{c} & q_{t,c} \rightarrow \mu \\ \\ x_b p^+, k_{t,b} & b \end{array}$$

Non-perturbative distribution $\tilde{\mathcal{A}}_a(x, k_{t,0}^2, \mu_0^2)$ includes intrinsic k_t :

$$f_a(x,\mu_0)e^{-k_t^2/2\sigma}$$

Kinematics in each branching governed by momentum conservation: $k_{t,b} = k_{t,a} + q_{t,c}$

• Angular ordering: $\mu' = q_t/(1-z)$ in z_M , $k_{t,a}$ and α_s

Hautmann, MvK et al. [Nucl.Phys.B 949 (2019) 114795]

- DGLAP splitting functions $P_{ab}(\alpha_s, z)$ ($P_{ab}^{(R)}$ are real emission probabilities)
- Sudakov form factor (non-resolvable / no-emission probability):

$$\Delta_a^{(PB)}(Q^2, q_0^2) = \exp\left\{-\int_{q_0^2}^{Q^2} \frac{dq_t^2}{q_t^2} \left[\frac{1}{2}\ln\left(\frac{Q^2}{q_t^2}\right)k_a(\alpha_s(q_t^2)) - d_a(\alpha_s(q_t^2))\right]\right\}$$

resummation up to at least NLL accuracy!

The Parton Branching (PB) method

Integration of the PB evolution equation over transverse momentum gives

$$\begin{split} \tilde{f}_{a}(x,\mu^{2}) &= \Delta_{a}(\mu^{2},\mu_{0}^{2})\tilde{f}_{a}(x,\mu_{0}^{2}) + \sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d\mu'^{2}}{\mu'^{2}} \int_{x}^{1} dz \\ &\times \Theta(z_{M}(\mu')-z) \frac{\Delta_{a}(\mu'^{2},\mu_{0}^{2})}{\Delta_{a}(\mu'^{2},\mu_{0}^{2})} P_{ab}^{(R)}(z,\alpha_{s}(q_{t})) \tilde{f}_{b}\left(\frac{x}{z},\mu'^{2}\right). \end{split}$$

Coincide with CMW for coherent branching (Catani-Marchesini-Webber, [Nucl. Phys. B349 (1991) 635]) by using:

- dynamical resolution scale $z_M(\mu') = 1 q_0/\mu'$
- $\alpha_s(q_t^2)$

Recover DGLAP in limits (Hautmann et al. [JHEP 1801 (2018) 070]):

- $z_M(\mu') \rightarrow 1$
- $\alpha_s(q_t) \rightarrow \alpha_s(\mu')$

PB TMD sets fitted to data, available in TMDLIB N.A. Abdulov, MvK et al. [Eur.Phys.J.C 81 (2021) 8, 752] Set 1: PB-NLO-HERAI+II-2018-set1 has $\alpha_s(\mu')$ Set 2: PB-NLO-HERAI+II-2018-set2 has $\alpha_s(q_t)$

Matching PB evolution to NLO matrix elements

Matching NLO from MADGRAPH_AMC@NLO with PB

A. Bermudez Martinez et al. [Phys. Rev. D 100, 074027 (2019)]

PB-TMDs and TMD shower implemented in CASCADE3

S. Baranov et al. [Eur.Phys.J.C 81 (2021) 5, 425]

- Avoid double counting: HERWIG6 subtraction terms (angular ordered shower)
- Associate k_t to partons in the hard process according to the TMD
- Two modes for parton shower: PB and CCFM shower

DY p_T results see next talk by A. Lelek

Now apply this method to dijets

Results: fixed order NLO versus NLO+PB

- fNLO: no subtraction terms
- CAS3: include subtraction terms, TMD

Q. Wang, REF workshop 2021

Results: back-to-back region $\Delta \phi \in [170, 180]^{\circ}$

In the back-to-back region, both perturbative and non-perturbative effects. $p_T^{leading} > 200$ GeV: perturbative effects dominate.

- MC@NLO matched to PB-TMD-set1: $\alpha_s(\mu)$
- MC@NLO matched to PB-TMD-set2: $\alpha_s(q_T)$

- TMD important in the back-to-back region
- ISR not important for inclusive 2-jet calculation

Azimuthal separation in nearly back-to-back jet topologies in inclusive 2- and 3- jet events in pp collisions at 13 TeV [Eur.Phys.J. C79 (2019) no.9, 773]

Results: theoretical uncertainties

- Scale uncertainties: μ_R and μ_F ; 7-point scale variations
- TMD uncertainties: uncertainty from fit to data

Results: comparison PB-TMD with PYTHIA8

- Madgraph_aMC@NLO with PYTHIA8
- Check results with and without MPI
- Tune in **Pythia** needed, not needed for PB!

• PB uncertainties: TMD + scale uncertainties

• Pythia uncertainties: $\mu_{R,F}$ in ME + μ_R variation in PS

TMD multi-jet merging

TMD merging is a new LO multi-jet merging algorithm

A. Bermudez Martinez et al. [Phys.Lett.B 822 (2021) 136700].

Steps of TMD merging

- Matrix elements for n-jet production
- Preveight the strong coupling according to the parton shower: α_s(Q) → α_s(Q) · α_s(q)/α_s(Q)
- Apply forward PB evolution to incoming partons with condition $k_t^2 \le \mu_{min}^2$
- TMD parton showering of the events
- Apply MLM merging procedure
 M. L. Mangano [NPB 632 (2002) 343–362]
 Compare hard partonic event with showered event and avoid double counting

This mainly increases accuracy at large p_T and small $\Delta \phi$ regions

TMD multi-jet merging

Dijet with soft radiation:

Preliminary result

Dijet + 1 jet + additional radiation:

Dijet + 2 jets + additional radiation:

To be continued...

Conclusions

The PB approach for TMDs takes into account both perturbative and non-perturbative effects.

- ullet Perturbative: soft gluon emissions $(z\to1)$ and all transverse momenta (q_\perp) from branchings in the QCD evolution
- Non-perturbative: intrinsic transverse momentum, subject to perturbative evolution

In high p_T dijets perturbative effects dominate, even at $\Delta \phi_{12} \sim \pi$.

Parton branching TMDs matched to NLO matrix elements

- · Good description of dijet azimuthal back-to-back region
- No tuning needed
- Small TMD uncertainties
- TMD evolution important at back-to-back region
- PB-TMD-set1 significantly different from PB-TMD-set2: $\alpha_s(q_t)$
- Multi-jet TMD merging increases accuracy at small $\Delta\phi$

Back-up slides

Inclusive & exclusive observable calculations with PB

The PB method is implemented in event generator CASCADE3 Eur. Phys. J. C 81, 425 (2021) [arXiv:2101.10221v1]

- Two modes for hard scattering events (LHE input): on-shell and off-shell
- Associate k_t to partons in the hard process according to the TMD
- Two modes for parton shower: PB and CCFM shower

TMD parton shower based on PB by constructing the backward Sudakov:

$$\Delta_{bw}(x, k_t, \mu_i, \mu_{i-1}) = \exp\left\{-\sum_{b} \int_{\mu_{i-1}^2}^{\mu_i^2} \frac{d\mu'^2}{\mu'^2} \int_{x}^{z_M} dz P_{ab}^{(R)} \frac{\tilde{\mathcal{A}}_b(x/z, k'_t, \mu')}{\tilde{\mathcal{A}}_a(x, k_t, \mu')}\right\}.$$

This is the no-branching probability in the TMD parton shower.

• In each splitting

$$x_{a}p^{+}, k_{t,a} = k_{t,a} + q_{t,c}$$

$$z = x_{a}/x_{b} = k_{t,a} + (1 - z)\mu$$
• Total transverse momentum:

$$k_{t} = k_{t,0} + \sum_{c} q_{t,c}$$

Results: on-shell versus off-shell matrix elements

 ${\rm KaT{\scriptstyle IE}}$ calculates LO matrix elements with off-shell partons. Compare with PB-TMD with MC@NLO.

at high Δφ: off-shellness / TMD more important than higher orders of α_s in calculation
 at smaller Δφ: relatively good description with off-shellness / TMD

Effects of TMD and parton shower

- Study effect of
 - TMD,

- TMD is very important in back-to-back region as well as in small $\Delta\phi$
- ISR does not play a big role since we look at 2 leading jets.

Effects of TMD and parton shower

- Study effect of
 - TMD,
 - · initial state TMD shower

- TMD is very important in back-to-back region as well as in small $\Delta\phi$
- ISR does not play a big role.