

Heavy lon Accelerator Facility ARD ST3 Annual Meeting September 2022 HZB Berlin, 7th of September 2022 Peter Forck, GSI on behalf of the GSI Accelerator Department

Overview on GSI

Solidarity with Ukraine

Synchrotron, Bp=18 Tm, dB/dt up to 10 T/s

E_{max} p: 4.7 GeV & U: 0.9 GeV/u

Achieved e.g.: Ar¹⁸⁺: 1·10¹¹

 $U^{28+}: 3.10^{10} \& U^{73+}: 1.10^{10}$

m **Storage rin** UNILAC: all ions p – U Energy: 3 – 12 MeV/u Pulse operation: 50 Hz, max. 5 ms Up to 20 mA current

Radioactive beams **Nuclear Physics** Atomic & Plasma Physics **Bio Physics**

ESR: Bp=10 Tm

CRYRING, Bp=1.4 Tm

SIS: E_{max}=2 GeV/u

CRYRING

Peter Forck on behalf of Acc. Dep., ARD ST3, 7th Sept. 2022

Beam Time Schedule Feb.-June 2022: Exemplarily for March

(1) only if parallel operation possible /// (2) only block mode

LINAC beam current in front of synchrotron

lon	Н	Li	С	0	Ar	Fe	Ni	Au	Pb	Bi	U
Current [mA]	1	0.005	0.045	1	3	0.05	0.025	0.025	0.5	0.015	0.5

Beam Ability 2022

Features:

- LINAC with 50 Hz pulsing, max. pulse length 5 ms
- ➤ 'parallel' operation,
 - i.e. each LINAC pulse can have different source and target
- > Synch SIS18 is filled by LINAC, typical cycle time \approx 3 s
- Storage ring might have hours storage times

Beamtime 2022

Beam on Target

Proton Generation by molecular Ions

UNILAC: Built for heavy ion acceleration, e.g. 1st LINAC part ²³⁸U⁴⁺ i.e. A/q=238/4=59.5 For **protons** ¹H⁺: Reduce of rf-voltage by factor ≈ 60 , **But:** Outside of amplifier regulation

6

Proton Beam Dynamics with low Voltage & large Phase Offset

UNILAC: Built for heavy ion acceleration, e.g. 1st LINAC part ²³⁸U⁴⁺ i.e. A/q=238/4=59.5 For **protons** ¹H⁺: Reduce of rf-voltage by factor 60, **BUT:** Outside of amplifier regulation

ALVAREZ Rf-voltage < 1V (Φ s \approx -30°)?

- $-\Phi$ s ≈ -57° (U_{rf} ≈ 1.5V) ♦
- $-\Phi$ s pprox -65° (U_{rf} pprox 2.0V) &
- $-\Phi$ s < -65° (U_{rf} > 2.0V) \degree

pros and cons of large negative phases:

- smooth rf-operation 🌢 🌢
- slightly reduced transmission \clubsuit
- emittance blow up <?</p>
- longitudinal phase space?

Achievement:

- $\geq \approx 3$ mA before SIS18, sufficient for actual users
- Typical emittance reached
- (High current \approx 50 mA by planned proton LINAC)

UNILAC: Ion source high current, low charge state e.g. ²³⁸U⁴⁺

 \rightarrow 1st LINAC part ²³⁸U⁴⁺ up to 1.4MeV/u (β =5.5%) \rightarrow gas stripper ²³⁸U⁴⁺ \rightarrow ²³⁸U²⁸⁺

 \rightarrow 2nd part of LINAC ²³⁸U²⁸⁺ up to 11.4 MeV/u (β =15.5%)

However, only ≈ 15 % for q=28+ depending on gas and pressure

Automotive Gasoline Injector

High pressure super-sonic gas jet required, inlet p = 120 bar, light molecules deliver small jet

> Contradictory requirements: high density \rightarrow good stripping, low density \rightarrow lower straggling

8

Pulsed inlet to reduce gas load inn vacuum chamber

Gas Stripper for efficient Change of Charge State: Results

Results:

- Higher yield of ²³⁸U²⁸⁺ for pulsed H₂ jet
- Lower emittance due to lower straggling

Talk by Simon Lauber: Novel beam dynamics for heavy ion acceleration

The GSI Accelerator Facility: Synchrotron

GSI Heavy Ion Synchrotron: Overview

Peter Forck on behalf of Acc. Dep., ARD ST3, 7th Sept. 2022

Slow Extraction: Principle and Micro-Structure

Spiky structure is one major problem for users as it increases the detector dead time

Slow Extraction: Micro-Structure Improvement

Possible mitigation:

- Smaller horizontal emittance by crossing shortly a coupling resonance $Q_x = Q_y + 1$ \Rightarrow Significant improvement
- Other methods also tested related to linear and non-linear beam dynamics

Duty factor, i.e. normalized fluctuations

$$F_{\Delta t} \equiv rac{c_{mean}^2}{c_{mean}^2 + \sigma_c^2} \equiv rac{\langle c \rangle^2}{\langle c^2 \rangle}$$

Part of EU-project IFAST-REX with Collaboration: CERN, GSI, Medical Ion Therapy Centers

Counts in 21 µs

The GSI Accelerator Facility: Storage Rings

14

Electron Cooling: Improvement of Beam Quality

Electron cooling: Superposition ion and cold electron beams with the same

Physics:

- Momentum transfer by Coulomb collisions
- Cooling force results from energy loss in the cold, co-moving electron beam Cooling time: 0.1 s for low energy highly charged ions, 1000 s for high energy protons Also Stochastic Cooling available at ESR

Electron Cooling: Improvement of Beam Quality

Electron cooling: Superposition ion and cold electron beams with the same

- Momentum transfer by Coulomb collisions
- Cooling force results from energy loss in the cold, co-moving electron beam Cooling time: 0.1 s for low energy highly charged ions, 1000 s for high energy protons Also Stochastic Cooling available at ESR

Deceleration of Highly Charged Ions

Peter Forck on behalf of Acc. Dep., ARD ST3, 7th Sept. 2022

Deceleration: Au⁷⁸⁺: 145 \rightarrow 30 \rightarrow 10 MeV/u followed b fast transfer to CRYRING

18

17 m

CRYRING: Significant improved ring from University Stockholm

Injection from ESR or local source, acceleration and deceleration, electron cooling

Parameter	Value				
Circumference	54.17 m (ESR/2)				
Vacuum pressure	10 ⁻¹¹ -10 ⁻¹² mbar				
lon energy	< 300 keV/u - 14 MeV/u				
Rigidity for ions	0.054 - 1.44 Tm				
Magnet ramping	1 T/s (4 T/s, 7 T/s)				
Stand-alone operation	local ion beam (300 keV/u, q/A > 0.25)				
Beam injection	multiturn and fast				
Beam extraction	slow and fast				

Beam time 2022:

Talk by Lorenzo Crescimbeni:

- Beams from ESR
- Extreme sensitive current measurement
- Beam from local source
- Atomic physics and material investigations
- Extracted beams

The FAIR Facility

The FAIR Facility

The FAIR Facility: Present Status

Conclusion:

- SGSI: One of the most versatile accelerator facilities in the world
- > Challenging operation with interesting accelerator physics and technologies
- > FAIR as a 'natural' extension in progress

Thank you for your attention! Do you have questions?