

Tracking with A Common Tracking Software

Xiaocong Ai for the ACTS team

March 1, 2022

The tracking challenge

- Much increased combinatorics with high pileup at future hadron colliders, e.g.
 - ~7k particles/event with <μ> = 200 at High Luminosity LHC (HL-LHC)
 - $<\mu> = 1000$ at FCC-hh
- Much increased CPU needs

More sensitive to rare phyics, and far more combinatorics!

Estimated CPU resources needed for event processing at ATLAS

The A Common Tracking Software project

- To prepare a modern open-source experimentindependent tracking toolkit for current and future detectors based on LHC tracking experience
 - Targeting at HL-LHC, but also for sPHENIX, ALICIE, EIC, Belle-II, FASER, MUC ...
- To provide an open-source R&D platform to explore new techniques, parallelization and acceleration

Experiment-independent toolkit for (charged) particle track reconstruction in (high energy) physics experiments implemented in modern C++

simulation reconstruction particle-track-reconstruction physics-experiment

- 🛱 Readme
- MPL-2.0 License
- Solution Code of conduct
- Cite this repository -
- ☆ 64 stars
- ● 10 watching
- **양 82** forks

Releases 94

+ 93 releases

The ACTS developers team

- 10~15 active developers on Core project
 - ATLAS heavy with increasing external contribution

Contributors 40

+ 29 contributors

supported by

ACTS fosters collaboration

- World-wide users from particle and nuclear physics, collider and non-collider experiments
 - >10 experiments
 - ATLAS, Belle-II, ALICE, sPHENIX, FASER, EIC, CEPC, LUXE, PANDA, Muon Collider ...
 - >15 institutes
 - CERN, LBNL, ORNL, UC Berkeley, Stanford University, DESY, Universite at Bonn...
 - ~45 forks of the acts repository
- Regular/irregular discussion between developers and experiment users
 - ATLAS, FASER, sPHENIX, ALICE, EIC...

ACTS design

- Modern C++ 17 concepts
- Highly templated design to avoid virtual lookup
- Abstraction of Event Data Model, geometry description, tracking algorithms from specific experiment details (geometry, B field,...)
- Strict thread-safety to facilitate concurrency
- Supports for contextual condition data
 - Calibration, alignment and Magnetic field data
- Minimal dependency (Eigen) to facilitate integration
- Highly configurable for usability
- Well-documented

https://acts.readthedocs.io/en/latest/

The tracking tools in ACTS

An alignment prototype

A light-weight test framework with application examples

A fast simulation engine

Core tools for track propagation, track fitting and track finding, vertexing...

DD4hep Digitization Identification

Plugins to support R&D on new techniques!

ACTS tracking geometry

- Geometry used for track reconstruction is simplified from full simulation geometry to reduce CPU consumption and speed up geometry navigation
- Material mapping tools allows to map (averaged) Gean4-based full detector material (recorded using Geantino scan) onto either surfaces or volumes

ACTS Surface concept

- Surface is the key component of tracking geometry
 - Concepts are largely transcribed from ATLAS SW
- Various concrete surfaces to support description of measurement with different detectors (silicon, wire-chamber, drift tube...)
 - Different local coordinate definitions, shapes and boundaries

ACTS track propagation

- Integration of the fourth-order Runge-Kutta-Nyström method for particle transport in magnetic field
- Allows for transport in dense volumes, e.g. calorimeter
- Support custom actions at each propagation step
 - Material effects handling
 - Material recording
 - Kalman filtering


```
// Propagation loop: stepping
while (/* step */){
    // Perform a step & check the result
    stepper.step(state);
    navigator.status(state);
    // Apply the actors
    actionList(state, result),
    // Check for abort condition
    if (abortList(result, state)) break;
    // Target after stepping
    navigator.target(state);
}
```

ACTS track and measurement parameterization

- Track parameterization

 - Global: $\mathbf{f} = (x, y, z, d_x, d_y, d_z, \frac{q}{p}, t)$ Local (bound): $\mathbf{b} = (d_0, z_0, \phi, \theta, \frac{q}{p}, t)$

Local track parameter represented at the perigee w.r.t. beam line

New feature of time

parameter integration

Local track parameter represented at detector local surface

- Measurement is a vector in subspace of the bound track parameters
 - Easy projection from the track parameters to measurement

$$\mathbf{r}_i = \mathbf{m}_i - \mathbf{H}_i \mathbf{b}_i$$

Calibration of experiment-specific "source measurement" to ACTS measurement is possible during tracking time

ACTS track finding/fitting

- Based on Kalman-filter (KF) algorithm
 - Straightforward handling of material effects
 - Allows for simulataneous track fitting and finding
 - Supports hole search and outlier rejection during fitting
- Track finding follows seeding + combinatorial Kalman filter (CKF)
- Implementation of Gaussian Sum Filter for non-Gaussian extension is on-going
- Non-linear extension of Kalman filter is in place
 - The commonly used (extended) KF in HEP is optimal for linear system

ACTS tracking performance: track parameters estimation

Pull of track parameters represented at the perigee

<u>arXiv:2106.13593v1</u>

Single muon 400 MeV < pT < 100 GeV, |eta|<2.5 TrackML detector, Bz= 2T

Track fitting with non-linearity correction

• The non-linearity correction corrects the bias and improves resolution of track parameters significantly!

Single muon (20<pT<100 GeV) Open Data Detector, solenoidal Bz= 2T (ATLAS-like)

<u>arxiv: 2112.09470.</u> Submitted to NIMA X. Ai, H. Gray, A. Salzburger, N. Styles

ACTS tracking performance: efficiency and fake rate

>99% tracking efficiency and <0.01% fake rate for tt at $<\mu>=200$ (~3000 charged tracks/event) •

Fake rate

sqrt(s) = 14 TeV, tt, µ = 200 TrackML detector, Bz= 2T

arXiv:2106.13593v1

ACTS vertex finding/fitting

- Various vertexing tools have been transcribed from ATLAS vertexing algorithms (performance well validated against ATLAS SW)
 - Iterative fitting-after-finding: Iterative Vertex Finder (IVF) (used at ATLAS Run-2)
 - Finding-through-fitting: Adaptive Multi-Vertex Finder (AMVF) (to be used at ATLAS Run-3)

ACTS time performance

Pure track fitting time ~ 0.2 ms/ track for ~15 detector layers with a single thread

Track propagation time

(C)KF time

arXiv:2106.13593v1

ACTS application examples

sPHENIX silicon

FASER

ACTS application example: sPHENIX

- ~1000 tracks/ event in Au+Au collision at sPHENIX
- ACTS provides necessary tracking resolution to resolve high momentum jets
 - $\Delta p/p \leq 0.2\% \cdot p$ (GeV) for pT > 10 GeV tracks
- ACTS provides X8 faster tracking than GenFit package
 - Total tracking time is 10 s/event (fitting time: ~1 s/event)

Comput Softw Big Sci 5, 23 (2021)

ACTS application example: EIC ATHENA

- ACTS is used as the tracking tool for ATHENA proposal at EIC
- Achieved tracking resolution reaches the physics working group requirement

Lots of thanks to Shujie Li and Wenging Fan

ACTS R&D: GPU-accelerated track fitting

- ALICE, LHCb. CMS are exploring GPU for HLT trigger
- The first look at heterogeneous computing in ACTS was porting a full KF to GPU
 - ~ 4.5X speed gain for >1000 tracks!
 - But not detector agnostic yet

X. Ai, G. Mania, H. Gray, M. Kuhn, N. Styles

Sys.	CPU		S×C×T	Clock rate (GHz)	Mem. (GB)
1	Intel Xeon E5-2698 v3 (Cori-Has	well-CPU)	2×16×2	2.30	128
1	Intel Xeon Phi 7250 (Cori-KNL-CPU)		1×68×4	1.40	96
2	Intel Xeon Gold 5115 (NAF-SL-CPU)		2×10×2	2.40	376
Sys.	GPU	FP32 cores	FP64 cores	Clock rate (GHz)	Mem. (GB)
1	GV100-SXM2 (Cori-V100-GPU)	5120	2560	1.53	16
2	GP100-PCIe (NAF-P100-GPU)	3584	1792	1.48	16

ACTS R&D: accelerating the full tracking chain

- On-going development towards a full tracking chain on GPU in ACTS community
 - Needs general solutions for difficulties with GPU: C++ STL containers and algorithms not usable, polymorphism not supported ...

Vectorised data model base and helper classes.			
● C++ ☆ 8 Ф MPL-2.0 😵 7 ⊙ 2 (1 issue needs help)			
detray Public Test library for detector surface intersection ● C++ ☆ 4 ▲ MPL-2.0 ♀ 4 ④ 5 (3 issues need help)			
traccc Public Demonstrator tracking chain on accelerators			

Designing **STL-like containers** and memory manager for both CPU and GPU <u>See S. Swatman's talk at ACAT21</u>

Geometry navigation **without runtime polymorphism** based on indiced surfaces (boundaries, transformations, material...)

See J. Niermann's talk at ACAT21

DESY is actively invovled: G. Mania, N. Styles

ACTS R&D: Machine Learning-based tracking

- ML is widely deployed in tracking domain
 - GNN for track finding (e.g. <u>Exa.TrkX</u>)
 - Evolutionary algorithm for parameters tuning
 - DNN based track classification
 - KNN for surface prediction
- The microsoft <u>ONNX</u> plugin was implemented in ACTS to allow deployment of ML solutions
 - Implementation of GNN in ACTS is being discussed

- Tracking will be more challenging at the HL-LHC era and other future particle and nuclear physics experiments
- ACTS is preparing a modern performant generic tracking software for this
- Growing interest from nuclear and particle experiments (utilized by >10 experiments)
- Active R&D lines within ACTS to accommodate the new computing landscape
- Outlook
 - There are still tools to develop and optimize in ACTS
 - Interplay with experiment frameworks is the key to make a real generic toolkit

GitHub https://github.com/acts-project

Mattermost https://mattermost.web.cern.ch/acts/channels/town-square

acts-developers@cern.ch acts-users@cern.ch acts-parallelization@cern.ch acts-machine-learning@cern.ch

Backup

ACTS magnetic field

- Magnetic field interfaces:
 - Constant magnetic field
 - Interpolated magnetic field
 - Calculates an interpolated B field value from a grid of known field values
 - Analytical solenoid magnetic field
 - Calculates field vectors analytically

- Magnetic field access:
 - Cache of field value make the access less expensive
 - To ensure thread-safety, the field cell is cached by client and passed between client and magnetic field service via client function argument

ATLAS Magnetic field in ACTS

Material description

Material effects need to be considered in tracking

Surface mapping for e.g. Silicon:

- Mapping material to discrete binned surfaces
- Material is considered when surface is crossed

X0 ratio Validation/Geantino vs η for ITk

Volume mapping for e.g. Calorimeter:

- Mapping material to 3D volume grid points
- Material considered at each propagation step

X0 ratio Validation/Geantino vs η for a dummy Calorimeter

Concurrency and parallelization in ACTS

- ACTS is designed to support both inter- and intra-event parallelization
 - Stateless and const-correct tools
 - Contextual data design to support concurrent event execution with multiple conditional data on flight
 - Calibration, alignment and Magnetic field data
 - Concurrent code execution tested within unit and integration test suites

Efficient CPU utilization even with contextual geometry

arXiv:2106.13593v1

Integration of ACTS into experiment software

The detectors used for development

r [mm]

The TrackML detector

The non-linearity in tracking

- The (extended) KF used in HEP is optimal for linear system
- Tracking precision is degraded by significant non-linear effects with large incident angle

ACTS Track parameter propagator interface

Integrating particle transport & geometry navigation

Highly-templated design emphasizing on speed and customizability

ACTS application example: Muon Collider

Great potential for discovery in the multi-TeV energy range!

EW measurement, Higgs couplings, new resonances DM search ...

Muon Collider Detector

Hit density is 10x HL-LHC due to Beam Induced Background (BIB)

Fit Library	Execution Time
ACTS	0.5 ms / evt
iLCsoft	100 ms / evt