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2The tracking challenge

● Much increased combinatorics with high pileup 
at future hadron colliders, e.g.

– ~7k particles/event with <m> = 200 at High 
Luminosity LHC (HL-LHC)

– <m> = 1000 at FCC-hh

● Much increased CPU needs

<m> up to 200 
(currently, ~60)

HL-LHC

More sensitive to rare phyics, 
and far more combinatorics!

Estimated CPU resources needed for 
event processing at ATLAS

http://cds.cern.ch/record/2729668
http://cds.cern.ch/record/2729668


  

3The A Common Tracking Software project

● To prepare a modern open-source experiment-
independent tracking toolkit for current and future 
detectors based on LHC tracking experience

– Targeting at HL-LHC, but also for sPHENIX, ALICIE, EIC, 
Belle-II, FASER, MUC …

● To provide an open-source R&D platform to explore 
new techniques, parallelization and acceleration



  

4The ACTS developers team

● 10~15 active developers on Core project

– ATLAS heavy with increasing external contribution



  

5ACTS fosters collaboration

● World-wide users from particle and nuclear physics, collider and non-collider experiments

– >10 experiments
● ATLAS, Belle-II, ALICE, sPHENIX, FASER, EIC, CEPC, LUXE, PANDA, Muon Collider ...

– >15 institutes 
● CERN, LBNL, ORNL, UC Berkeley, Stanford University, DESY, Universite at Bonn…

– ~45 forks of the acts repository
● Regular/irregular discussion between developers and experiment users

– ATLAS, FASER, sPHENIX, ALICE, EIC...



  

6ACTS design

● Modern C++ 17 concepts

● Highly templated design to avoid virtual lookup

● Abstraction of Event Data Model, geometry 
description, tracking algorithms from specific 
experiment details (geometry, B field,…)

● Strict thread-safety to facilitate concurrency

● Supports for contextual condition data

– Calibration, alignment and Magnetic field data

● Minimal dependency (Eigen) to facilitate 
integration

● Highly configurable for usability

● Well-documented

https://acts.readthedocs.io/en/latest/

https://acts.readthedocs.io/en/latest/


  

7The tracking tools in ACTS

Core tools for track propagation, track 
fitting and track finding, vertexing...

A light-weight test 
framework with 
application 
examples

A fast simulation 
engine

An alignment 
prototype

Plugins to support R&D 
on new techniques!



  

8ACTS tracking geometry

● Geometry used for track reconstruction is simplified from full simulation 
geometry to reduce CPU consumption and speed up geometry navigation

● Material mapping tools allows to map (averaged) Gean4-based full detector 
material (recorded using Geantino scan) onto either surfaces or volumes



  

9

● Surface is the key component of 
tracking geometry

– Concepts are largely transcribed 
from ATLAS SW

● Various concrete surfaces to support 
description of measurement with 
different detectors (silicon, wire-
chamber, drift tube…)

– Different local coordinate 
definitions, shapes and boundaries

Surface types in ATLAS SW

Surface types in ATLAS SW

ACTS Surface concept



  

10ACTS track propagation

● Integration of the fourth-order Runge-
Kutta-Nyström method for particle 
transport in magnetic field

● Allows for transport in dense volumes, 
e.g. calorimeter

● Support custom actions at each 
propagation step

– Material effects handling

– Material recording

– Kalman filtering



  

11ACTS track and measurement parameterization

● Track parameterization

– Global:

– Local (bound): 

Local track parameter 
represented at the perigee w.r.t. 
beam line 

Local track parameter 
represented at detector 
local surface 

From E. Moyse

● Measurement is a vector in 
subspace of the bound track 
parameters

– Easy projection from the track 
parameters to measurement

● Calibration of experiment-specific 
“source measurement” to ACTS 
measurement is possible during 
tracking time

New feature of time 
parameter integration



  

12ACTS track finding/fitting

● Based on Kalman-filter (KF) algorithm

– Straightforward handling of material effects

– Allows for simulataneous track fitting and finding

– Supports hole search and outlier rejection during fitting

● Track finding follows seeding + combinatorial Kalman filter 
(CKF)

● Implementation of Gaussian Sum Filter for non-Gaussian 
extension is on-going

● Non-linear extension of Kalman filter is in place

– The commonly used (extended) KF in HEP is optimal 
for linear system



  

13ACTS tracking performance: track parameters estimation

Single muon 400 MeV < pT 
< 100 GeV, |eta|<2.5
TrackML detector, Bz= 2T

arXiv:2106.13593v1Pull of track parameters represented at the perigee

https://arxiv.org/pdf/2106.13593.pdf


  

14Track fitting with non-linearity correction

● The non-linearity correction 
corrects the bias and improves 
resolution of track parameters 
significantly!

Single muon (20<pT<100 GeV)
Open Data Detector, solenoidal 
Bz= 2T (ATLAS-like)

arxiv: 2112.09470. Submitted to NIMA
X. Ai, H. Gray, A. Salzburger, N. Styles

https://arxiv.org/abs/2112.09470


  

15ACTS tracking performance: efficiency and fake rate

● >99% tracking efficiency and <0.01% fake rate for tt at <m>=200 (~3000 charged tracks/event)

sqrt(s) = 14 TeV, tt, m =200
TrackML detector, Bz= 2TarXiv:2106.13593v1

Tracking efficiency Fake rate

https://arxiv.org/pdf/2106.13593.pdf


  

16ACTS vertex finding/fitting

● Various vertexing tools have been transcribed from ATLAS vertexing algorithms (performance 
well validated against ATLAS SW)

– Iterative fitting-after-finding: Iterative Vertex Finder (IVF) (used at ATLAS Run-2)

– Finding-through-fitting: Adaptive Multi-Vertex Finder (AMVF) (to be used at ATLAS Run-3)

see B. Schlag’s slides arXiv:2106.13593v1

https://indico.cern.ch/event/902131/contributions/3797615/subcontributions/302749/attachments/2007646/3353484/vertexing_updates.pdf#search=bastian
https://arxiv.org/pdf/2106.13593.pdf


  

17ACTS time performance

● Pure track fitting time ~ 0.2 ms/ track for ~15 detector layers with a single thread

sqrt(s) = 14 TeV, tt, m =200
TrackML detector, Bz= 2T

arXiv:2106.13593v1

(C)KF time
Track propagation time

1000 charged pions per event
TrackML detector, Bz= 2T

https://arxiv.org/pdf/2106.13593.pdf


  

18ACTS application examples

ATLAS ITk (HGTD) PANDA silicon sPHENIX silicon 

BELLE II FASER

arXiv:2106.13593v1

https://arxiv.org/pdf/2106.13593.pdf


  

19ACTS application example: sPHENIX 
● ∼1000 tracks/ event in Au+Au collision at sPHENIX

● ACTS provides necessary tracking resolution to resolve high momentum jets
– Δp∕p  0.2% p (GeV) for pT > 10 GeV tracks≲ ⋅

● ACTS provides X8 faster tracking than GenFit package

– Total tracking time is 10 s/event (fitting time: ~1 s/event)

The time per track ft: ~0.7 ms 
for ~50 layers

Comput Softw Big Sci 5, 23 (2021)

https://github.com/GenFit/GenFit
https://link.springer.com/article/10.1007/s41781-021-00068-w#Ack1


  

20ACTS application example: EIC ATHENA

Lots of thanks to Shujie 
Li and Wenqing Fan

● ACTS is used as the tracking tool for ATHENA proposal at EIC

● Achieved tracking resolution reaches the physics working group requirement



  

21ACTS R&D: GPU-accelerated track fitting

● ALICE, LHCb. CMS are exploring GPU for HLT trigger

● The first look at heterogeneous computing in ACTS 
was porting a full KF to GPU

– ~ 4.5X speed gain for >1000 tracks!

– But not detector agnostic yet

Comput Softw Big Sci 5, 20

CPU

GPU

X. Ai, G. Mania, H. Gray, M. Kuhn, N. Styles 

https://link.springer.com/article/10.1007%2Fs41781-021-00065-z


  

22ACTS R&D: accelerating the full tracking chain

● On-going development towards a full tracking chain on GPU in ACTS community

– Needs general solutions for difficulties with GPU: C++ STL containers and algorithms not usable, 
polymorphism not supported ...

Geometry navigation without runtime 
polymorphism based on indiced surfaces 
(boundaries, transformations, material...)

Designing STL-like containers and 
memory manager for both CPU and GPU

See J. Niermann’s talk at ACAT21

See S. Swatman’s talk at ACAT21

DESY is actively invovled:
G. Mania, N. Styles

https://indico.cern.ch/event/855454/contributions/4605075/
https://indico.cern.ch/event/855454/contributions/4605054/


  

23ACTS R&D: Machine Learning-based tracking

● ML is widely deployed in tracking domain

– GNN for track finding (e.g. Exa.TrkX)

– Evolutionary algorithm for parameters tuning

– DNN based track classification

– KNN for surface prediction

● The microsoft ONNX plugin was implemented in ACTS to 
allow deployment of ML solutions

– Implementation of GNN in ACTS is being discussed

See poster at ACAT21

https://arxiv.org/pdf/2012.01249.pdf
https://exatrkx.github.io/
https://www.epj-conferences.org/articles/epjconf/pdf/2021/05/epjconf_chep2021_03071.pdf
https://indico.cern.ch/event/942858/contributions/3978661/attachments/2088605/3509098/IrinaEne-ACTSDevsMeeting-081820.pdf
https://www.epj-conferences.org/articles/epjconf/pdf/2021/05/epjconf_chep2021_03053.pdf
https://onnx.ai/
https://indico.cern.ch/event/855454/contributions/4596500/attachments/2352846/4014348/643_poster.pdf


  

24Summary

● Tracking will be more challenging at the HL-LHC era and other future particle and nuclear 
physics experiments

● ACTS is preparing a modern performant generic tracking software for this

● Growing interest from nuclear and particle experiments  (utilized by >10 experiments )

● Active R&D lines within ACTS to accommodate the new computing landscape

● Outlook

– There are still tools to develop and optimize in ACTS

– Interplay with experiment frameworks is the key to make a real generic toolkit

https://mattermost.web.cern.ch/acts/channels/town-square

https://github.com/acts-project

acts-developers@cern.ch

acts-users@cern.ch
acts-parallelization@cern.ch

acts-machine-learning@cern.ch
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Q&A
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Backup



 

27ACTS magnetic field

● Magnetic field interfaces:
– Constant magnetic field
– Interpolated magnetic field

● Calculates an interpolated B field value from a grid of 
known field values

– Analytical solenoid magnetic field
● Calculates field vectors analytically

ATLAS Magnetic field in ACTS

Interpolated magnetic field

● Magnetic field access:

– Cache of field value make the access less expensive 

– To ensure thread-safety, the field cell is cached by 
client and passed between client and magnetic field 
service via client function argument



 

28
Material description

● Material effects need to be considered in tracking

X0 ratio Validation/Geantino vs h for ITk X0 ratio Validation/Geantino vs h for a 
dummy Calorimeter

Surface mapping for e.g. Silicon:
● Mapping material to discrete binned surfaces
● Material is considered when surface is crossed

Volume mapping for e.g. Calorimeter:
● Mapping material to 3D volume grid points
● Material considered at each propagation step



  

29Concurrency and parallelization in ACTS

● ACTS is designed to support both inter- and 
intra-event parallelization

– Stateless and const-correct tools

– Contextual data design to support 
concurrent event execution with multiple 
conditional data on flight

● Calibration, alignment and Magnetic 
field data

– Concurrent code execution tested within 
unit and integration test suites

Efficient CPU utilization even 
with contextual geometry

arXiv:2106.13593v1

https://arxiv.org/pdf/2106.13593.pdf


  

30Integration of ACTS into experiment software



  

31The detectors used for development

The TrackML detector

The CERN Open Data Detector



  

32The non-linearity in tracking

● The (extended) KF used in HEP is optimal for 
linear system

● Tracking precision is degraded by significant 
non-linear effects with large incident angle



  

33ACTS Track parameter propagator interface

Integrating particle transport & geometry navigation
Highly-templated design emphasizing on speed and customizability



  

34ACTS application example: Muon Collider

Great potential for discovery in the multi-TeV 
energy range!

EW measurement, Higgs couplings, new resonances
DM search …

Muon Collider Detector

Improved precision and 
speed (~200X faster?) 
than iLCsoft

Plots from K. Krizka

Hit density is 10x HL-LHC 
due to Beam Induced 
Background (BIB)

https://arxiv.org/pdf/2005.10289.pdf
https://link.springer.com/article/10.1007%2FJHEP06%282021%29133
https://muoncollider.web.cern.ch/design/muon-collider-detector
https://indico.cern.ch/event/1062146/contributions/4552429/attachments/2323876/3957784/mcc-20211007.pdf
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