Heavy Quark Production at the LHC

Alexander Mitov

DESY, Zeuthen

Alexander von Humboldt Fellow

Outline and Introduction

- Top production at the LHC: study top-quarks in abundance! Check QCD predictions for the total rate.
- Top decay and top mass measurement:
 Measure the top mass down to 1 GeV

- LHC: can we better understand b-production? b-jets, b-mesons and b-fragmentation: check total rate v.s. QCD Is there New Physics in this observable?
- ❖Interested in open B-production,
- ❖Will not go into the LHCb B-physics program

Top Production

Top is fundamental. Not much known from direct measurements:

 $M_{top} = 171 \pm 2.1$ GeV latest combined result from Tevatron

❖ A handful of single-top events seen at the Tevatron (DZero); enough to confirm V_tb in the SM interval (0.68 – 1.0) with 95% C.L.

Testing the top is important not only for SM; It might be exclusively correlated with new physics.

Top Production

- LHC: a new era in top physics
 - Huge statistics a top pair each second,

- ❖σ_top measured within 10%. Can we do better? And how?
- ❖Recall the talk by Dissertori: b-tagging brings 7% out of 10% total!
- Theory: currently firmly at NLO
- ❖Theory uncertainty around 15% (10% with resummations, 3-4% pdf).
- Check? NNLO needed.
- What theory can/should provide for precision top physics?
 - ❖First the total cross-section (pp \rightarrow tt+X) at NNLO
 - ❖Then more differentially
 - ❖Work underway; results not very soon ...

Top Production (cont.)

❖ Recent result on pp → tt+Jet+X at NLO

S. Dittmaier, P. Uwer and S. Weinzierl ('07)

Real Emission:

Virtual corrections:

- Result important for:
 - Forward/Backward charge asymmetry of heavy quarks at NLO
 - ❖background for Higgs at the LHC pp → ttH+X

Top Production (cont.)

♦ Numerical results on pp → tt+Jet+X at NLO

Clear stabilization of the scale dependence at NLO!

Top Production (cont.)

❖ F/B assymetry in pp → tt+Jet+X at NLO

$$\sigma_{\mathrm{LO}}^{\pm} = \sigma_{\mathrm{LO}}(y_{\mathrm{t}} > 0) \pm \sigma_{\mathrm{LO}}(y_{\mathrm{t}} < 0)$$

$$A_{\rm FB,NLO}^{\rm t} = \frac{\sigma_{\rm LO}^{-}}{\sigma_{\rm LO}^{+}} \left(1 + \frac{\delta \sigma_{\rm NLO}^{-}}{\sigma_{\rm LO}^{-}} - \frac{\delta \sigma_{\rm NLO}^{+}}{\sigma_{\rm LO}^{+}} \right)$$

$$A_{\rm FB,LO}^{\rm t} = \frac{\sigma_{\rm LO}^{-}}{\sigma_{\rm LO}^{+}}$$

$$(\mu = \mu_{\rm ren} = \mu_{\rm fact})$$

Large NLO corrections?

Top decay and top mass

- Top decay so far studied at NLO
 - The real simplification comes from ignoring interference production/decay
- The decay is important for top mass reconstruction

R. Chierici, CMS + ATLAS, ICHEP 2006

Method	$\delta m m_t$	$\delta \mathrm{m_t}$	$\delta m m_t$	$\delta \mathrm{m_t}$
	(stat.)	(syst. instr.)	(syst. theory)	
bbqq ℓu	0.2	1.0	0.6	1.1
bbqq $\ell \nu$ (high p _T)	0.2	0.9	1.4	1.7
$\mathrm{bb}\ell u\ell u$	0.5	1.0	0.3	1.2
bbqbbq	0.2	2.3	3.5	4.2
J/Ψ decays	0.5	0.5	1.4	1.5
Via $\sigma_{ m tt}$	0.1	0.7	4.0	4.1

Top mass

- "Traditional" methods jet measurements
- However, the huge statistics at LHC allows a different approach:

A. Kharchilava (1999) R. Chierici, A. Dierlamm CMS NOTE 2006/058

- Uncertainty below 1 GeV possible!
- Main uncertainty: b-fragmentation:

Source	$\delta \mathrm{m_t} \; (\mathrm{GeV}/c^2)$	
Proton PDF	0.28	
Scale definition	0.71	
Λ_{QCD}	0.31	
$ m \dot{Q}^2$	0.56	
Light jet fragmentation	0.46	
b-quark fragmentation	0.51	
Minimum bias/Underlying event	0.64	
Total theoretical	1.37	
Electron E scale	0.21	
Muon p scale	0.38	
Electron E resolution	0.19	
Muon p resolution	0.12	
Jet E scale	0.05	
Jet E resolution	0.05	
Background knowledge	0.21	
Total experimental	0.54	
Total systematic	1.47	

- The experimental uncertainty is low;
- The theory must be carefully analyzed.
- Ongoing work here in Zeuthen:

(with Cacciari, Moch and Vogt)

On b-fragmentation at NNLO

Top mass

Correlation between the the invariant mass and M_top Contribution from "correct" and "wrong" lepton identification

R. Chierici, CMS + ATLAS, ICHEP 2006

R. Chierici, A. Dierlamm CMS NOTE 2006/058

B-production at the LHC

- ❖Important for:
 - Controlling QCD
 - Higgs and New Physics searches (b is often a decay mode)
- It is worthwhile recalling the b-saga at the Tevatron:

Cacciari, Nason ('02); Cacciari, Frixione, Mangano, Nason, Ridolfi ('03)

Recall: the total b-rate is reconstructed exclusively!

Sensitivity to fragmentation!

B-production at the LHC

- Spectacular B-studies at LHC:
 - ❖P_T spectra up to 1000 GeV
 - ❖16M/year at CMS alone

HERA-LHC workshop ('06)

❖Dominant uncertainty – NNLO corrections and b-fragmentation

B-jets at the LHC

Surprisingly large NLO uncertainties at the Tevatron:

CDF Collaboration, Note 8418

What is this large uncertainty due to?

A. Banfi, G. P. Salam and G. Zanderighi: incorrect b-jet definition!

- ❖In short: IR definition of the flavor is needed, or is bb-bar=b?
- They propose to define the jet of the flavor according to its net flavor.

B-jets at the LHC

- The effect of this new definition seems to be rather important:
 - Small perturbative corrections,
 - One can use purely massless calculations at large P_T (< 5% effect)</p>

With the new jet definition NLO uncertainty just 5%-10%!

? Can this improve b-jet measurements at the LHC (important for top production)?

Potential problem:

 $g \rightarrow bb$ has zero flavor

unless one of the b's is not tagged. Unknown effect!

Summary

- I reviewed top and bottom production at LHC (from a narrow prospective)
- Emphasis on more inclusive observables
- Message: we work for some precise observables (NNLO)

- Questions: what is the experimental situation?
- Are improvements with b-measurements anticipated?