Summary and plans on Generators

Alan Price Siegen University

1st ECFA Workshop on e^+e^- Higgs/EW/Top Factories

General Purpose Monte-Carlos are the true workhorse of phenomenology

SHERPA

It is difficult to imagine particle physics without them

PYTHIA

HERWIG

~85% of LHC papers cite at least one of them

Monte Carlo Talks

Event Shapes and Jet substructure at lepton colliders

Daniel Reichelt

Institute for Particle Physics Phenomenology, Durham University

Parton showers from old to new paradigms

Simon Plätzer Institute of Physics — NAWI, University of Graz Particle Physics — University of Vienna

At the ECFA workshop on e+e- colliders Hamburg | 6 October 2022

UNIVERSITÄT GRAZ UNIVERSITY OF GRAZ wien wien

Alan Price Siegen University

MARIE CURIE

Photoproduction: towards NLO accuracy

First ECFA workshop at DESY, Hamburg

Peter Meinzinger 6th October 2022 IPPP, Durham University

1

Monte Carlo Talks

Event Shapes and Jet substructure at lepton colliders

Daniel Reichelt

Institute for Particle Physics Phenomenology, Durham University

Ν	/leasureme		Improve Hadroniz	ation Mode	
			Frank Krauss		
First ECFA Workshop - 6.10.2022 - DESY					

Parton showers from old to new paradigms

Measurements to Improve Hadronization Models

Soft physics effects may dominate theory uncertainties: no first-principles theory \rightarrow **must measure!**

• typical observables:

 event shapes 	$\longrightarrow dy$
 (trust, major, minor,) (differential) jet multiplicities 	$\longrightarrow d y$
 (differential jet multis,) single-particle distributions 	\longrightarrow dynamics, p
(x _P for charged/hadron species, dependent on primary • fragmentation functions	y quarks) $\longrightarrow dy$
 (especially <i>B</i> fragmentation (from SLD)) (PDG) hadron multiplicities 	\longrightarrow popping & m
(especially K, p,; possibly also ratios w.r.t. π^{\pm})	

Frank Krauss

Missing Pieces

- 1. Gluon fragmentation
 - $g \rightarrow QQ$ splitting tricky in parton showers
- 2. The riddle of the soft photons
 - Photons number scales with neutral hadrons
- 3. BE Effects
 - Improved algorithms needed
- 4. Color Reconnections
 - How to systematically test it in $Z/\gamma^* \rightarrow q\bar{q}$

there is a good chance that it will become a **limiting factor** for the analysis and interpretation of precise data and their uncertainties

- vnamics
- vnamics
- popping
- /namics
- ultiplets

Photoproduction: towards NLO accuracy Peter Meinzinger

Jet Transverse momenta

- Photoproduction, i.e, γγ → X, is an important ingredient for QCD at lepton–lepton collider phenomenology, dominant process for jet production
- Simulation in Sherpa validated against LEP and HERA data, running at MEPS@LO
- Uncertainties dominated by photon PDFs
- Extension to NLO QCD using
- MC@NLO needs some attention, but is feasible

Event Shapes and Jet substructure at lepton colliders **Daniel Reichelt**

 $\alpha_{\rm s}$ from soft drop groomed event shapes [Larkoski, Marzani, Soyez, Thaler '14]

Fits to MC data (SHERPA MEPS@NLO w/ up to 5 jets) Higher-Order understanding of grooming => smaller error bars

Multi-Jet Rates

NLO+NLL' accuracy for y_{34}, y_{45}, y_{56} **Resummation plugin to SHERPA**

[Baberuxki, Preuss, DR, Schumann '19]

Overview Talks

QCD for Lepton Colliders **Daniel Reichelt**

- Review of Analytical Resummation
- Recent developments in Parton Showers
- For more detail on PS, see **Simon Plätzer** talk

Generators: Back to the Future Andrzej Siódmok

- General overview of Monte Carlos, past and present
- Recording available on the indico page

QED Status and Benchmarking Event Generators for Lepton Colliders **Alan Price**

- Different approaches to QED radiation
- Collinear vs Soft resummation
- Update on technical Benchmarking

Tools For e^+e^-

- Dedicated $e^+e^- \to f\bar{f}$ $f = \mu, \tau, q$ event generator
- initial-final state interferences
- Non-soft QED complete up to 3rd order LO, NLO 2nd order, in the initial and final states
- Very precise, theory error is <0.1%
- Recently, heroic effort to rewrite to C++
- other processes e.g HZ
- Improved treatmeant of NLO-EW corrections
- BHLUMI: did not change from LEP but it was used to reanalyse LEP data[Jadach and Janot, Phys. Letters B803 (2020) 135319]

• Resumed (exponentiated) multi photon effects at the AMPLITUDE level (CEEX scheme) keeping (exponentiated)

• Next steps, adding CEEX $\mathcal{O}(\alpha^3 L^3)$ corrections, while maintaining the soft limit. Also port the resummation to

KORALW, YFSWW

[S. Jadach, W. Placzek, M. Skrzypek, B.F.L. Ward, Z. Was]

- into KandY
- squared level (EEX)
- Tauola, JETSET
- [Eur.Phys.J.C 80 (2020) 6, 499]

• Dedicated $e^+e^- \rightarrow W^+W^- \rightarrow f_1f_2f_3f_4$ event generators, now merged

Resumed (exponentiated) multi photon effects at the AMPLITUDE

Includes Coulomb corrections, "Naive" QCD corr, CKM, FSR Photos,

Next steps, adding CEEX style resummation, theoretical work done

[Denner, A., Dittmaier, S., Roth, M., & Wackeroth, D.]

- generator
- ISR resummed via Collinear resummation
- Includes Coulomb corrections
- Important check for WW physics => Two independent MC

RacoonWW

• Dedicated $e^+e^- \to W^+W^- \to 4f$ and $e^+e^- \to W^+W^- \to 4f\gamma$ event

- Dedicated $e^+e^- \rightarrow e^+e^-, \mu^+\mu^-, \gamma\gamma$
- ISR by collinear resummation at LL and matched to NLO QED
- Final state photons are fully exclusive
- Future work to include NNLO QED and NLO EW effects

BabaYaga [Balossini, Bignamini, Carloni Calame, Lunardini, Montagna, Nicrosini, Piccinini]

- NLO for both QCD and EW.
- ISR via collinear resummation. LL pdfs but NLL on the way
- single photon emission from ISR.
- Beam dynamics via CIRCE interface
- NLO EW calculations at lepton collisions with beam polarisations
- Planned improvement to multi-photon emissions: PS + YFS

WHIZARD

[Kilian, Ohl, Reuter, Brass, Bredt, Kreher, Rothe, Stienemeier, Strieg]]

Photon kinematics: Inclusive in ISR, exact in hard process and optional

Madgraph5 aMC@NLO [Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Pagani, Shao, Stelzer, Torrielli, Zaro, Zhao]

- NLO for both QCD and EW.
- ISR via collinear resummation. State of the art NLL
- Photon kinematics: Inclusive in ISR, exact in hard process
- Beam dynamics simulation based on GuineaPig results
- NLO+NLL predictions completed.

- Two options for QED radiation
 - Dipole shower combined with LL electron PDF
 - Automised YFS (EEX) resummation for e^+e^-
 - NNLO QED and NLO EW corrections to decays
- Next steps: Automise NLO-EW + YFS corrections, include photon splittings $\gamma \rightarrow ff$
- Photoproduction see Peter Meinzinger
- Importantly, independent YFS MC from the Krakow MC \bullet
- One Author dedicated to e^+e^- (funding dependent)

Sherpa

[Bothmann, Chahal, Höche, Krauss, Napoletano, Price, Schönherr, Schumann, Siegert]

- MC are far from being ready for future lepton colliders
 - But, we still have a lot of time. Personally, I believe we will reach the required perturbative accuracy
 - Hadronization will be a bottle neck
- Recent developments for e^+e^- physics gives us a lot to be hopeful for

Outlook