$\tilde{\tau}$ searches and measurement prospects at future Higgs factories

Teresa Núñez - DESY

- Motivation of $\tilde{\tau}$ studies
- Limits at LEP and LHC
- $\tilde{\tau}$ searches at the ILC
 - Signal and Background
 - Analysis worst scenario
 - General cuts
 - Limits
- Other studies
- Outlook and conclusions

First ECFA Workshop on e+e- Higgs/EW/Top factories 5 October 2022, Hamburg

Motivation for $\tilde{\tau}$ searches

Searching SUSY focused on best motivated NLSP candidates and most difficult scenarios

$ilde{ au}$ satisfies both conditions


Scalar superpartner of τ -lepton

- Two weak hypercharge eigenstates $(\tilde{\tau}_R, \tilde{\tau}_L)$ not mass degenerate
- Mixing yields to the physical states $(\tilde{\tau}_1, \tilde{\tau}_2)$, the lightest one being with high probability the lightest sfermion (stronger trilinear couplings)
- With assumed R-parity conservation:
 - pair produced (s-channel via Z^0/γ exchange, lowest σ with no coupling to Z^0)
 - decay to LSP and τ , implying more difficult signal identification than the other sfermions

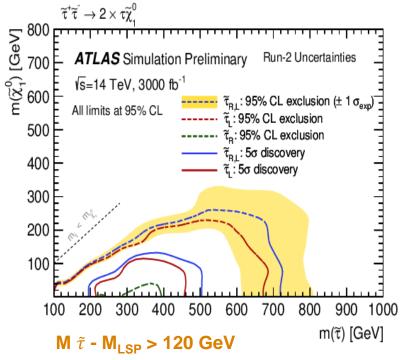
SUSY models with a light $\tilde{\tau}$ can accommodate the observed relic density ($\tilde{\tau}$ - neutralino coannihilation)

Limits at LEP and LHC

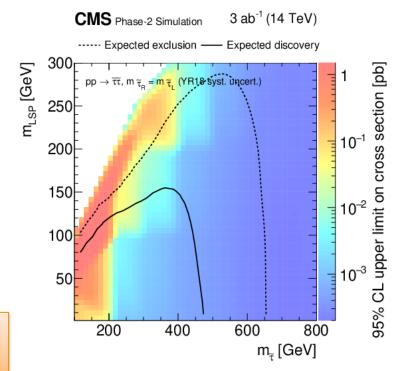
$\tilde{\tau}$ searches at LEP

- \sqrt{s} = 183-208 GeV
- Combined four LEP experiments data

LEPSUSYWG/04-01.1



Valid for any mixing and any values of the not shown parameters


Limits at LEP and LHC (ctd.)

$\tilde{\tau}$ prospects at HL-LHC

Expected gain in sensitivity to direct $\tilde{\tau}$ production

- Two models: $ilde{ au}_{\it R}$ and $ilde{ au}_{\it L}$
- No mixing
- Two $\tilde{\tau}$ assumed to be mass-degenerate
- No mixing

ATL-PHYS-PUB-2018-048

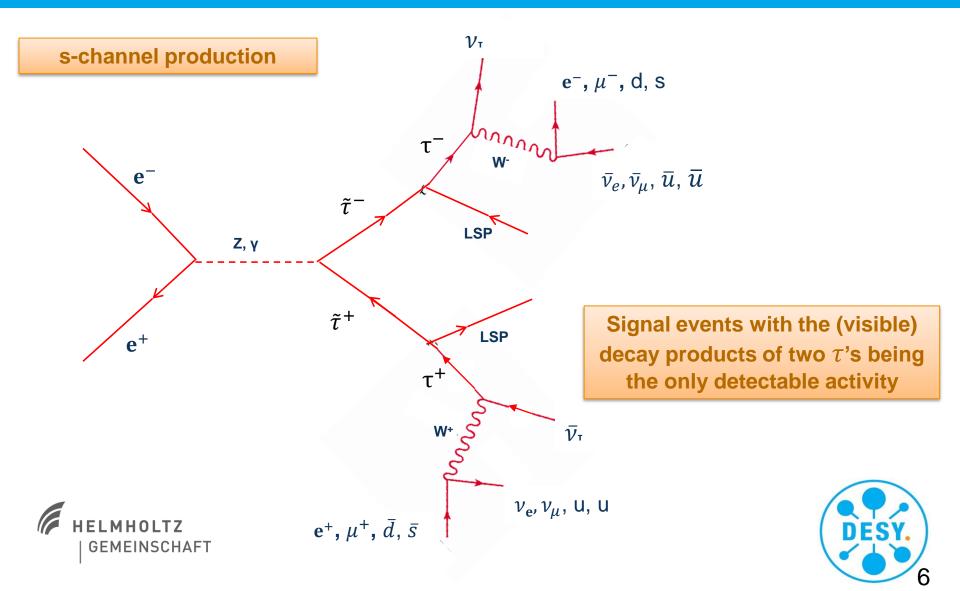
No discovery potential for $\tilde{\tau}$ coannihilation scenarios or $\tilde{\tau}_{R}$ pair production

Profits in future e+e- Higgs/EW/Tops factories

Wrt. previous electron-positron colliders:

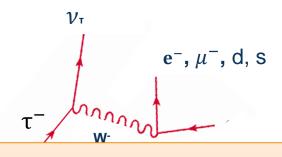
- increased luminosity and centre-of-mass energy
- improved technologies

Wrt. hadron colliders:


- cleaner environment
- known initial state
- triggerless operation of the detectors

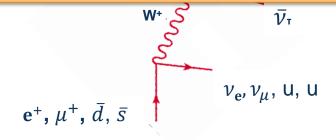
Studies using the full detector simulation and reconstruction procedures of the International Large Detector concept (ILD) at the International Linear Collider (ILC)

- electron-positron collider at $\sqrt{s} = 250-500$ GeV with upgradability (1TeV)
- electrons (80%) and positrons (30%) polarisations
- clean and reconstructable final state (near absence of pile-up)
- hermetic detectors (almost 4π coverage)



Signal characterization

Signal characterization


s-channel production

Signature:

- large missing energy and momentum
- large fraction of detected activity in central detector (isotropic production of scalar particles)
- large angle between the two τ -lepton directions
- unbalanced transverse momentum
- zero forward-backward asymmetry

Background

SM processes with real or fake missing energy

Irreducible

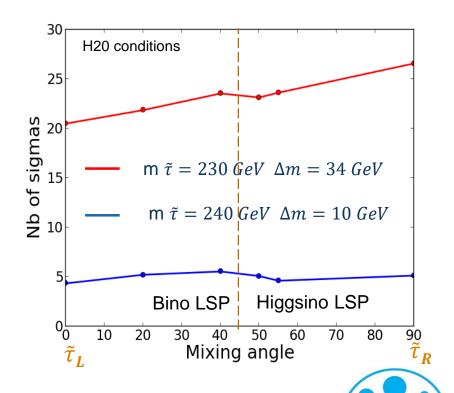
4-fermion production with two of the fermions being neutrinos and two leptons

ZZ -> νν ττ, WW -> ντ ντ

Almost irreducible

- ee -> $\tau\tau$, ZZ -> vv ll, WW -> lv $(l = e \text{ or } \mu)$
- ee -> ττ + ISR, ee -> ττ ee, γγ -> ττ

Mis-identification of τ 's or of missing momentum


Analysis of worst scenario

Search for "worst" mixing angle ...

- weighting contribution of both polarisations (likelihood-ratio statistics) using ILC conditions
- taking into account effect of mixing not only on cross-section but also on signal efficiency

53 degrees $\tilde{\tau}$ mixing ->lowest cross-section for unpolarized beams

P(+80%,-30%) and P(-80%, +30%) with integrated luminosity 1.6 ab⁻¹ each

General cuts

Properties $\tilde{\tau}$ -events "must" have

- Missing energy (E_{miss}). $E_{miss} > 2 \times M_{LSP}$ GeV
- Visible mass (m_{vis}) . $m_{vis} < 2 \times (M_{\tilde{\tau}} M_{LSP})$ GeV
- Momentum of all jets (p_{jet}). $p_{jet} < 70\%$ Beam Momentum (or $M_{\tilde{\tau}}/M_{LSP}$ dependent)
- Two well identified τ 's and little other activity

Well known initial state

Hermeticity

Maximum jet momentum:

Above 95 % signal efficiency for each of these cuts (excluding for the τ -identification)

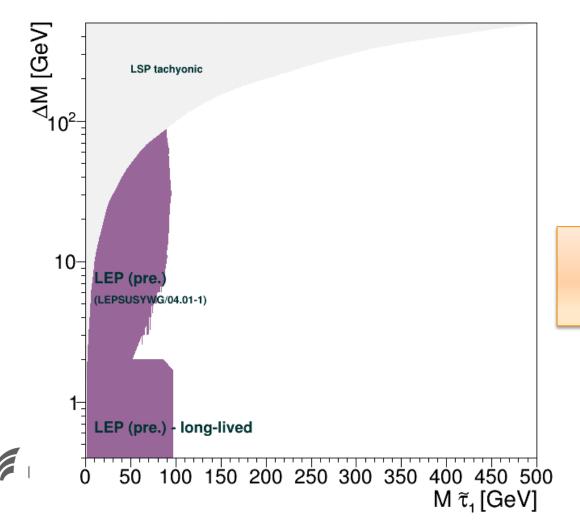
$$P_{max} = \frac{\sqrt{s}}{4} (1 - (\text{MLSP}/M_{\tilde{\tau}})^2) (1 + \sqrt{1 - \frac{4M\tilde{\tau}^2}{s}})$$

General cuts (ctd.)

Properties $\tilde{\tau}$ -events "might" have, but background "rarely" has

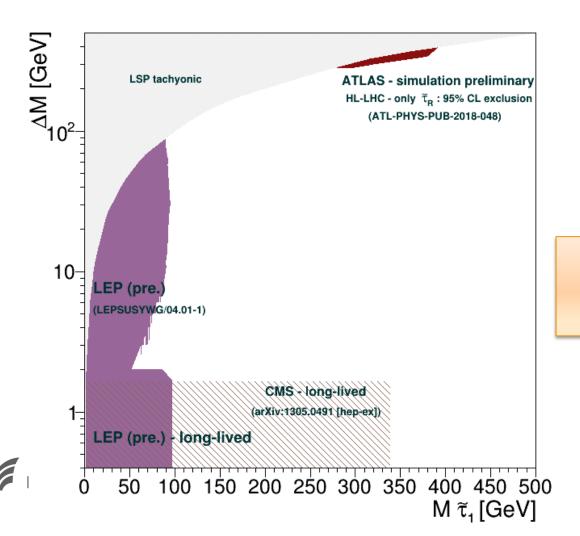
- Missing transverse momentum
- Large acoplanarity
- Large transverse momentum wrt. thrust-axis
- High angles to beam

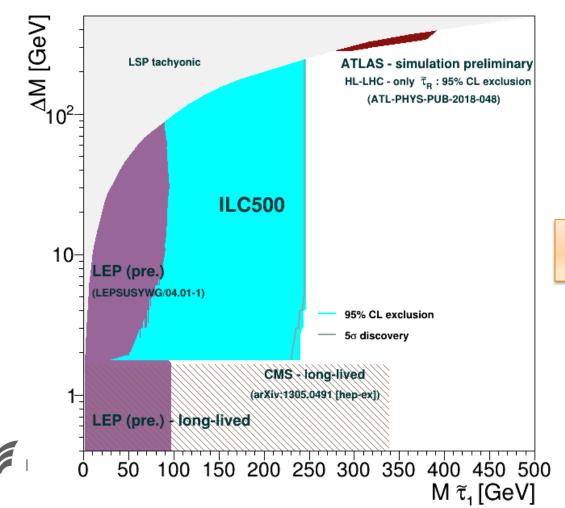
Cuts against properties of irreducible sources of background


- Charge asymmetry (Σcharge * cos(polar_angle))
- Difference between visible mass and Z mass

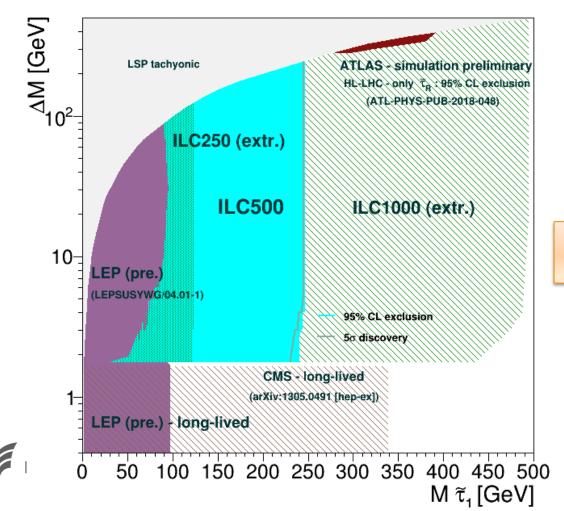
Properties that the background often "does not" have

- Low energy in small angles
- Low energy of isolated neutral clusters
 | GEMEINSCHAFT



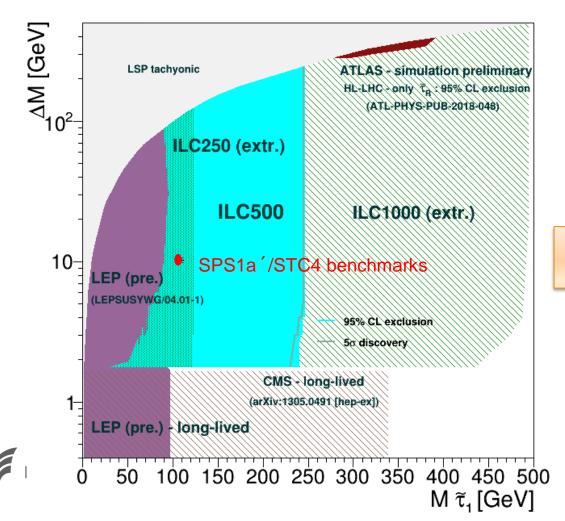

Current model-independent limits for $\Delta M > T$ mass come from LEP

Current model-independent limits for $\Delta M > T$ mass come from LEP



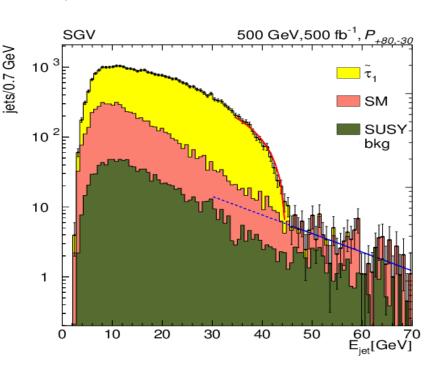
At ILC discovery and exclusion are almost the same

arXiv:2105.08616

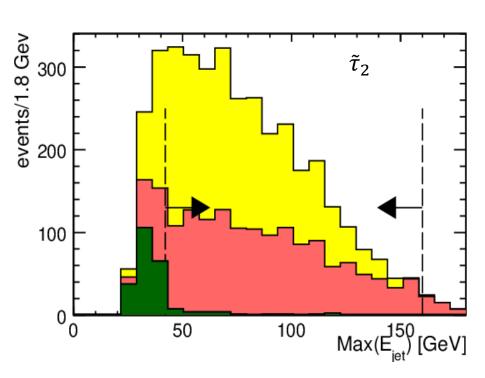


At ILC discovery and exclusion are almost the same

arXiv:2105.08616


At ILC discovery and exclusion are almost the same

arXiv:2105.08616


Prospects for $\tilde{\tau}$ measurements at the ILC

 $M_{\tilde{\tau}}$ from M_{LSP} and end-point spectrum

 M_{LSP} from other sources (ex. smuon, selectron end-points)

 $M_{\tilde{\tau}}$ from cross-sections

EPJC, 76(4),1 (2016)

Phys Rev, D82,055016 (2010)

Per mil-level mass-measurements will be possible at the ILC

Prospects for $\tilde{\tau}$ measurements at the ILC (ctd.)

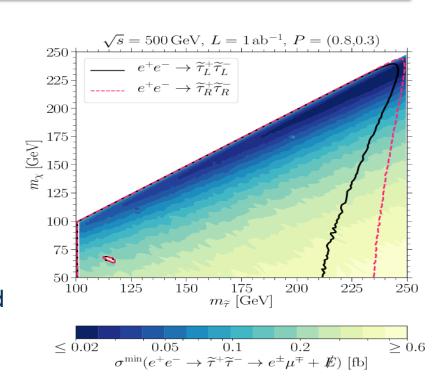
au polarisation from energy spectrum from au decays

 $\tilde{\tau}$ mixing from cross-sections and masses

EPJC, 76(4),1 (2016)

Phys Rev, D82,055016 (2010)

Per cent-level measurements are likely possible at the ILC



Other studies

An example of direct $\tilde{\tau}$ - searches at future electron colliders

Broad class of models for which a future electron collider would be able to directly discover new physics at scenarios that would evade detection at the LHC

Any future electron collider would have ~inmediately reach to new (EW-) charged physics up to its kinematic limit

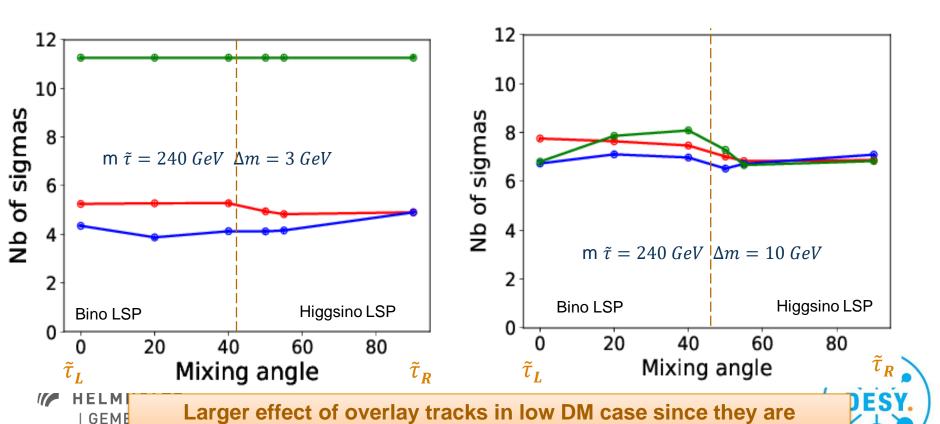
Phys Rev, D102,015026 (2020)

arXiv:2004.02834 [hep-ph]

Outlook/Conclusions

- Even after HL-LHC large parts of the $\tilde{\tau}$ -LSP mass plane will remain unexplored
- Future electron-positron colliders are ideally suited for $\tilde{\tau}$ searches
- ILC will discover/exclude $\tilde{\tau}$'s for any $\tilde{\tau}$ -LSP mass difference and any $\tilde{\tau}$ -mixing nearly up to the kinematic limits
- Worst scenario for $\tilde{\tau}$ production at the ILC was reviewed taking into account ILC beam polarisation conditions
- If $\tilde{\tau}$'s exist in the kinematic range of the ILC, precision measurements of $\tilde{\tau}$ properties are possible at few percent level

Backup slides



Effect of overlay particles

Fast simulation (SGV) – not overlay tracks

- Not cut on overlay tracks
- Cut on tracks based on transversal momentum, angular distribution and input parameter significance

more similar to the signal ones: strong reduction of significance

17