

Benchmarking FIMP signatures at future Higgs factories

Jan Klamka, A.F. Żarnecki University of Warsaw

jan.klamka@fuw.edu.pl

Feebly Interacting Massive Particles

- Increasingly tightening constraints on WIMPs
 - \rightarrow Even smaller couplings start being considered
- Feeble couplings lead to **freeze-in** mechanism for dark matter, in contrast to freeze-out (WIMPs, neutrons) 10^{-4}
- The concept of FIMPs is getting attention in recent years

5 October 2022

2009

Jan Klamka, Benchmarking FIMP signatures at future Higgs factories

Signatures and the reconstruction

- Due to the small couplings, FIMPs often appear alongside long-lived particles
- Can also be long-lived themselves!
- Variety of possible signatures at colliders

 \rightarrow most of them can be described as tracks not pointing / not originating from the IP

• This talk: focus on neutral long-lived states

At the LHC: search for a given signature At e^+e^- HF: we can reconstruct full events \leftarrow production/decay channels crucial!

Jan Klamka, Benchmarking FIMP signatures at future Higgs factories

Motivation and the strategy

- Variety of models offering **FIMP** (or **LLP**) candidates
- Such states seem perfect to **compare** <u>different detector / collider</u> options
- Difficult, if each experiment studies prospects for their favourite model
- Main goal: selection of the "experimental" benchmark scenarios
 - \rightarrow in a space of **physical properties of particles**, <u>not</u> a model parameter space
 - \rightarrow different <u>signatures</u>, **production** and **decay** channels have to be considered
- \rightarrow "experimental" scenarios can be translated to benchmarks in the space of a given model

Signature examples in models with FIMPs

<u>SUSY + axino DM (arXiv:1506.07532)</u>

- Long-lived higgsino \tilde{h}^0 and frozen-in LSP axino \tilde{a}

Singlet-Doublet DM (arXiv:1805.04423)

- Additional fermions: long-lived $\chi_{2,3}$ and stable $\chi_1\,$ DM FIMP (Z $_2$ symmetry)
- Pair production of $\chi_{2,3}$ and decays $\chi_{2,3} \to \chi_1 h, \chi_1 Z$ lead to a signature of two displaced vertices + $\not\!\!\!E$

Higgs portal (arXiv:1908.05685)

- Long-lived dark Higgs ${\cal S}$ that decays into DM or SM by mixing with SM Higgs
- With $h\to SS$ and $S\to {\rm SM\,SM}, {\rm DM\,DM}$ possible signatures of 2 (or 1) displaced vertices + Z boson (or Z + \not\!\!\! E)

Signature examples in models at this Workshop

<u>Stau search</u> – Teresa's talk

- For the stau-LSP mass difference < $\rm m_{_\tau}$, stau becomes long-lived
- Displaced/kinked tracks + ∉

<u>Double Dark Portal</u> – Felix's talk

- Additional vector boson \tilde{K} that can be long-lived
- Mono-photon channel or various displaced signatures e.g. in the Higgstrahlung(-like) process

Long-Lived Particles at the FCC-ee – Juliette's talk

- Axion-Like Particles displaced vertex or photon + $h/Z/\gamma$
- Exotic Higgs decays 1 or 2 displaced vertices + Z (+∉)
- Heavy Neutral Leptons displaced vertex + ∉

Signature examples analysed by the Warsaw group

<u>Heavy neutrinos</u> – Krzysztof's talk

- Additional heavy neutrino
- If long-lived, a displaced vertex + $\not\!\!\!E$ signature available

Signature examples analysed by the Warsaw group

<u>Heavy neutrinos</u> – Krzysztof's talk

- Additional heavy neutrino
- If long-lived, a displaced vertex + ∉ signature available

<u>Mono-photon</u> – Filip's talk

- Most general way for DM searches at the e+e- colliders; almost model-independent
- Invisible but for the ISR photon

Signature examples analysed by the Warsaw group

<u>Heavy neutrinos</u> – Krzysztof's talk

- Additional heavy neutrino
- If long-lived, a displaced vertex + ∉ signature available

<u>Mono-photon</u> – Filip's talk

- Most general way for DM searches at the e+e- colliders; almost model-independent
- Invisible but for the ISR photon

Inert Doublet Model (EPJ C 82, 738 (2022))

- 4 new scalars, 1 stable DM candidate H
- Displaced vertex + ∉ signature possible; (Kinked tracks + ∉ for charged channel)

Possible signatures at e⁺e⁻ colliders – single X production

Assuming generic **long-lived particle X** and one **DM candidate***, the signatures can be categorised based on the possible production and decay channels:

 predicted by models mentioned on the slides 5-9

If Z_2 is imposed:

- \diamond X odd under Z₂
- - X even under Z_2

* branches with neutrinos also marked as DM

- Invisible final states correspond to the mono-photon signature
- Diagrams used only for visualisation, other channels also taken into account

Possible signatures at e⁺e⁻ colliders - X pair production

Assuming generic **long-lived particle X** and one **DM candidate***, the signatures can be categorised based on the possible production and decay channels:

- predicted by models mentioned on the slides 5-9

If Z_2 is imposed:

- $\diamondsuit~$ X odd under $\mathbf{Z}_{_{2}}$
- - X even under Z_2

* branches with neutrinos also marked as DM

- The cells in the table can be referred back to signatures in particular models
- Mixed channel $(\mathrm{XX} \rightarrow 2\mathrm{SM} + 2\mathrm{DM})$ also possible

Possibly interesting signatures yet to be considered

- $e^+e^- \rightarrow X DM, X \rightarrow SM DM$ (one displaced photon/jet) – scenario similar to stau search, but with a single X production
- $e^+e^- \rightarrow 2X, X \rightarrow 2SM$ (two displaced vertices) – standard search, could be interesting if X is long-lived
- $e^+e^- \rightarrow 2X Z/h/\gamma$, X → 2SM DM (two displaced vertices + $Z/h/\gamma + \not\in$) – associated production of two long-lived states
- $e^+e^- \rightarrow 2X Z/h/\gamma$, $X \rightarrow SM DM$ (two displaced jets/photons + $Z/h/\gamma + \not\in$) - associated production of two long-lived states with missing energy

- **Higgs factories** offer a good prospect for studying models with **FIMPs** and **long-lived particles** with a possibility of full-event reconstruction
- To allow for more direct comparison between different experiments we plan to propose a set of **"experimental" benchmark scenarios**
- Different <u>signatures</u> have to be considered classification made based on production/decay channel
- **Selection of points** in the space of physical particle properties (<u>not</u> model parameter space) as **the next step**
- Various models predict many of the presented signatures