SUSY at future colliders: Will e^+e^- -colliders be relevant?

Mikael Berggren¹

¹DESY, Hamburg

First ECFA Workshop on e⁺e⁻ Higgs/EW/Top Factories, October 5 to 7, 2022, DESY

CLUSTER OF EXCELLENCE
OUANTUM UNIVERSE

¹Largely based on arXiv:2003.12391

SUSY: What do we know?

Naturalness, hierarchy, DM, g-2 all prefers light electro-weak sector.

- Except for 3d gen. squarks, the coloured sector - where pp machines excel doesn't enter the game.
- If the LSP is higgsino or wino, EW sector is "compressed". Only for bino-LSP can the difference be large.
- So, most sparticle-decays are via cascades, with small $\Delta(M)$ at the end.
- For this, current limits from LHC are only for specific models, and LEP2 sets the scene.

SUSY: What do we know?

Naturalness, hierarchy, DM, g-2 all prefers light electro-weak sector.

- Except for 3d gen. squarks, the coloured sector - where pp machines excel doesn't enter the game.
- If the LSP is higgsino or wino, EW sector is "compressed". Only for bino-LSP can the difference be large.
- So, most sparticle-decays are via cascades, with small Δ(M) at the end.
- For this, current limits from LHC are only for specific models, and LEP2 sets the scene.

SUSY: What do we know?

Naturalness, hierarchy, DM, g-2 all prefers light electro-weak sector.

- Except for 3d gen. squarks, the coloured sector - where pp machines excel doesn't enter the game.
- If the LSP is higgsino or wino, EW sector is "compressed". Only for bino-LSP can the difference be large.
- So, most sparticle-decays are via cascades, with small Δ(M) at the end.
- For this, current limits from LHC are only for specific models, and LEP2 sets the scene.

- MSSM, R-parity conservation (R-parity violation always easier at e⁺e⁻)
- sfermions not NLSP (idem, except $\tilde{\tau}$ but even worse for $pp \dots$)
- Then: LSP is Bino, Wino, or Higgsino (more or less pure), same for the NLSP
- M_1 , M_2 and μ are the main-players.
- Consider any values, and combinations of signs, up to values that makes the bosinos out-of-reach for any new facility ~ a few TeV.
- Also vary other parameters $(\beta, M_A, M_{sfermion})$ with less impact.
- No other prejudice.
- Use SPheno 4.0.5beta to calculate spectra and BR:s, and use Whizard 2.8.0 for cross-sections

- MSSM, R-parity conservation (R-parity violation always easier at e⁺e⁻)
- sfermions not NLSP (idem, except $\tilde{\tau}$ but even worse for $pp \dots$)
- Then: LSP is Bino, Wino, or Higgsino (more or less pure), same for the NLSP
- M_1 , M_2 and μ are the main-players.
- ullet Consider any values, and combinations of signs, up to values that makes the bosinos out-of-reach for any new facility \sim a few TeV.
- Also vary other parameters $(\beta, M_A, M_{sfermion})$ with less impact.
- No other prejudice.
- Use SPheno 4.0.5beta to calculate spectra and BR:s, and use Whizard 2.8.0 for cross-sections

- MSSM, R-parity conservation (R-parity violation always easier at e⁺e⁻)
- sfermions not NLSP (idem, except $\tilde{\tau}$ but even worse for $pp \dots$)
- Then: LSP is Bino, Wino, or Higgsino (more or less pure), same for the NLSP
- M_1 , M_2 and μ are the main-players.
- Consider any values, and combinations of signs, up to values that makes the bosinos out-of-reach for any new facility ~ a few TeV.
- Also vary other parameters $(\beta, M_A, M_{sfermion})$ with less impact.
- No other prejudice.
- Use SPheno 4.0.5beta to calculate spectra and BR:s, and use Whizard 2.8.0 for cross-sections

- MSSM, R-parity conservation (R-parity violation always easier at e⁺e⁻)
- sfermions not NLSP (idem, except $\tilde{\tau}$ but even worse for $pp \dots$)
- Then: LSP is Bino, Wino, or Higgsino (more or less pure), same for the NLSP
- M_1 , M_2 and μ are the main-players.
- Consider any values, and combinations of signs, up to values that makes the bosinos out-of-reach for any new facility ~ a few TeV.
- Also vary other parameters $(\beta, M_A, M_{sfermion})$ with less impact.
- No other prejudice.
- Use SPheno 4.0.5beta to calculate spectra and BR:s, and use Whizard 2.8.0 for cross-sections

- MSSM, R-parity conservation (R-parity violation always easier at e⁺e⁻)
- sfermions not NLSP (idem, except $\tilde{\tau}$ but even worse for $pp \dots$)
- Then: LSP is Bino, Wino, or Higgsino (more or less pure), same for the NLSP
- M_1 , M_2 and μ are the main-players.
- Consider any values, and combinations of signs, up to values that makes the bosinos out-of-reach for any new facility ~ a few TeV.
- Also vary other parameters $(\beta, M_A, M_{sfermion})$ with less impact.
- No other prejudice.
- Use SPheno 4.0.5beta to calculate spectra and BR:s, and use Whizard 2.8.0 for cross-sections

- MSSM, R-parity conservation (R-parity violation always easier at e⁺e⁻)
- sfermions not NLSP (idem, except $\tilde{\tau}$ but even worse for $pp \dots$)
- Then: LSP is Bino Wino or Higgsino (more or less pure), same for the NLSF
 What happens with spectra,
- M_1, M_2 and I cross-sections, BRs when
- Consider an exploiting this "cube"? p to values that makes the bosinos out-or-reach for any new facility ~ a few TeV.
- Also vary other parameters $(\beta, M_A, M_{sfermion})$ with less impact.
- No other prejudice.
- Use SPheno 4.0.5beta to calculate spectra and BR:s, and use Whizard 2.8.0 for cross-sections

- ullet M_{LSP} vs. $M_{\widetilde{\chi}_1^\pm}$
- \bullet M_{LSP} vs. $M_{\tilde{\chi}^0_2}$
- Colours indicate different settings of the secondary parameters (lesson is that they don't matter much...)
- Open circles indicated cases where GUT-scale unification of M₁ and M₂ is not possible

- M_{LSP} vs. $M_{\tilde{\chi}_1^{\pm}}$
- ullet M_{LSP} vs. $M_{{ ilde \chi}_2^0}$
- Colours indicate different settings of the secondary parameters (lesson is that they don't matter much...)
- Open circles indicated cases where GUT-scale unification of M₁ and M₂ is not possible

Another angle: $\Delta(M)$ for $\tilde{\chi}_1^{\pm}$ vs. that of $\tilde{\chi}_2^0$: Important experimentally

- Three regions:
 - Bino: Both the same, but can be anything.
 - Wino: $\Delta_{\widetilde{\chi}_1^\pm}^\pm$ small, while $\Delta_{\widetilde{\chi}_2^0}$ can be anything.
 - Higgsino: Both often small
- But note, seldom on the "Higgsino line", ie. when the chargino is exactly in the middle of mass-gap between the first and second neutralino

Another angle: $\Delta(M)$ for $\tilde{\chi}_1^{\pm}$ vs. that of $\tilde{\chi}_2^0$: Important experimentally

- Three regions:
 - Bino: Both the same, but can be anything.
 - Wino: $\Delta_{\widetilde{\chi}_1^\pm}^\pm$ small, while $\Delta_{\widetilde{\chi}_2^0}$ can be anything.
 - Higgsino: Both often small
- But note, seldom on the "Higgsino line", ie. when the chargino is exactly in the middle of mass-gap between the first and second neutralino.

SUSY In The Briefing-book: Bino LSP (ie. large $\Delta(M)$)

NB: e^+e^- curves are certain discovery, pp are possible exclusion !!!

- ATL-PHYS-PUB-2018-048,
 ATLAS HL-LHC projection,
 extrapolated (up and down)
- This is for the best mode!
- The other decay mode
- Better at M_{LSP} =0, weaker at lower Δ_M .
- Why is the decay-mode an issue? Here's why:
 Vary signs of a Max and Max
- So: The exclusion-region is the *intersection* of the two plots, not the *union*!

- ATL-PHYS-PUB-2018-048,
 ATLAS HL-LHC projection,
 extrapolated (up and down)
- This is for the best mode!
- The other decay mode
- Better at M_{LSP} =0, weaker at lower Δ_M .
- Why is the decay-mode an issue? Here's why :
 Vary signs of μ, M₁, and M
- So: The exclusion-region is the *intersection* of the two plots, not the *union*!

- ATL-PHYS-PUB-2018-048,
 ATLAS HL-LHC projection,
 extrapolated (up and down)
- This is for the best mode!
- The other decay mode
- Better at M_{LSP} =0, weaker at lower Δ_M .
- Why is the decay-mode an issue? Here's why:
 - Vary signs of μ , M_1 , and M_2
- So: The exclusion-region is the *intersection* of the two plots, not the *union*!

- ATL-PHYS-PUB-2018-048,
 ATLAS HL-LHC projection,
 extrapolated (up and down)
- This is for the best mode!
- The other decay mode
- Better at M_{LSP} =0, weaker at lower Δ_M .
- Why is the decay-mode an issue? Here's why:
 - Vary signs of μ , M_1 , and M_2
- So: The exclusion-region is the *intersection* of the two plots, not the *union*!

- ATL-PHYS-PUB-2018-048,
 ATLAS HL-LHC projection,
 extrapolated (up and down)
- This is for the best mode!
- The other decay mode
- Better at M_{LSP} =0, weaker at lower Δ_M .
- Why is the decay-mode an issue? Here's why:
 - Vary signs of μ , M_1 , and M_2
- So: The exclusion-region is the *intersection* of the two plots, not the *union*!

- ATL-PHYS-PUB-2018-048,
 ATLAS HL-LHC projection,
 extrapolated (up and down)
- This is for the best mode!
- The other decay mode
- Better at M_{LSP} =0, weaker at lower Δ_M .
- Why is the decay-mode an issue? Here's why:
 - Vary signs of μ , M_1 , and M_2
- So: The exclusion-region is the *intersection* of the two plots, not the *union*!

SUSY In The Briefing-book: Bino LSP (ie. large Δ_M)

NB: e^+e^- curves are certain discovery, pp are possible exclusion !!!

SUSY In The Briefing-book: Wino/Higgsino LSP

SUSY In The Briefing-book: Wino/Higgsino LSP - Soft lepton Sources

- Soft lepton analysis:
 - ATLAS HL-LHC projection ATL-PHYS-PUB-2018-031.
 - CMS HE-LHC projection (and extrapolated to FCChh)
 CMS-PAS-FTR-18-001.
- Crucial experimental issue: lepton ID
 - To separate $e/\mu/\pi$, particles must reach calorimeter.
 - ... and FCChh detector has both higher B-field and calorimeter radius (and CMS has that wrt. ATLAS)
- Unlikely that lower $\Delta(M)$ will be excluded in future

SUSY In The Briefing-book: Wino/Higgsino LSP - Soft lepton Sources

- Soft lepton analysis:
 - ATLAS HL-LHC projection ATL-PHYS-PUB-2018-031.
 - CMS HE-LHC projection (and extrapolated to FCChh)
 CMS-PAS-FTR-18-001.
- Crucial experimental issue: lepton ID
 - To separate $e/\mu/\pi$, particles must reach calorimeter.
 - ... and FCChh detector has both higher B-field and calorimeter radius (and CMS has that wrt. ATLAS)
- Unlikely that lower $\Delta(M)$ will be excluded in future

SUSY In The Briefing-book: Wino/Higgsino LSP - Soft lepton Sources

- Soft lepton analysis:
 - ATLAS HL-LHC projection ATL-PHYS-PUB-2018-031.
 - CMS HE-LHC projection (and extrapolated to FCChh)
 CMS-PAS-FTR-18-001.
- Crucial experimental issue: lepton ID
 - To separate $e/\mu/\pi$, particles must reach calorimeter.
 - ... and FCChh detector has both higher B-field and calorimeter radius (and CMS has that wrt. ATLAS)
- Unlikely that lower $\Delta(M)$ will be excluded in future.

SUSY In The Briefing book: Wino/Higgsino LSP - Very low $\Delta(M)$ sources

(Don't look at the pink curves - they correspond to a detector that is never considered anywhere else i the CDR)

- The "Disappearing tracks" was done by FCChh (in the CDR)
 - FCChh-detector
 - FCChh-ish PU (but still to small: 500 vs. CDR number 955)
 - Assumes only SM loops for mass-splitting, i.e. not SUSY mixing: The "other two" mass-parameres very large.
 - For higgsinos: Only just reaches 2 σ
- A study of the "mono-X" method was done in arXiv:1805.00015, but it is too rudimetary in the experimental aspects to allow for any conclusions.

SUSY In The Briefing book: Wino/Higgsino LSP - Very low $\Delta(M)$ sources

(Don't look at the pink curves - they correspond to a detector that is never considered anywhere else i the CDR)

- The "Disappearing tracks" was done by FCChh (in the CDR)
 - FCChh-detector
 - FCChh-ish PU (but still to small: 500 vs. CDR number 955)
 - Assumes only SM loops for mass-splitting, i.e. not SUSY mixing: The "other two" mass-parameres very large.
 - ullet For higgsinos: Only just reaches 2 σ
- A study of the "mono-X" method was done in arXiv:1805.00015, but it is too rudimetary in the experimental aspects to allow for any conclusions.

SUSY In The Briefing book: Wino/Higgsino LSP - Very low $\Delta(M)$ sources

(Don't look at the pink curves - they correspond to a detector that is never considered anywhere else i the CDR)

- The "Disappearing tracks" was done by FCChh (in the CDR)
 - FCChh-detector
 - FCChh-ish PU (but still to small: 500 vs. CDR number 955)
 - Assumes only SM loops for mass-splitting, i.e. not SUSY mixing: The "other two" mass-parameres very large.
 - For higgsinos: Only just reaches 2 σ
- A study of the "mono-X" method was done in arXiv:1805.00015, but it is too rudimetary in the experimental aspects to allow for any conclusions.

- Because cτ depends on Δ(M), and cτ needs to be macroscopic to get "Disappearing tracks".
- Cf. arXiv:1712.02118 where ATLAS found that $c\tau$ needs to be \sim 6 cm.
- ... and Wino LSP
- Conclusion: Not at all sure that that lifetime will be large. Good chances - no guarantee - for Wino, unlikely for Higgsino.

- Because $c\tau$ depends on $\Delta(M)$, and $c\tau$ needs to be macroscopic to get "Disappearing tracks".
- Cf. arXiv:1712.02118 where ATLAS found that $c\tau$ needs to be \sim 6 cm.
- $c\tau$ for Higgsino LSP
- ... and Wino LSF
- Conclusion: Not at all sure that that lifetime will be large. Good chances - no guarantee - for Wino, unlikely for Higgsino.

- Because $c\tau$ depends on $\Delta(M)$, and $c\tau$ needs to be macroscopic to get "Disappearing tracks".
- Cf. arXiv:1712.02118 where ATLAS found that $c\tau$ needs to be \sim 6 cm.
- $c\tau$ for Higgsino LSP
- ... and Wino LSP
- Conclusion: Not at all sure that that lifetime will be large. Good chances - no guarantee - for Wino, unlikely for Higgsino.

- Because $c\tau$ depends on $\Delta(M)$, and $c\tau$ needs to be macroscopic to get "Disappearing tracks".
- Cf. arXiv:1712.02118 where ATLAS found that $c\tau$ needs to be \sim 6 cm.
- $c\tau$ for Higgsino LSP
- ... and Wino LSP
- Conclusion: Not at all sure that that lifetime will be large. Good chances - no guarantee - for Wino, unlikely for Higgsino.

- Because $c\tau$ depends on $\Delta(M)$, and $c\tau$ needs to be macroscopic to get "Disappearing tracks".
- Cf. arXiv:1712.02118 where ATLAS found that $c\tau$ needs to be \sim 6 cm.
- $c\tau$ for Higgsino LSP
- ... and Wino LSP
- Conclusion: Not at all sure that that lifetime will be large. Good chances - no guarantee - for Wino, unlikely for Higgsino.

SUSY In The Briefing-book: Wino/Higgsino LSP

So: Disappearing tracks exclusion is actually off the scale!

SUSY In The Briefing-book: Re-boot

SUSY In The Briefing-book: Re-boot

With models that are consitent with g-2 and no over-production of DM From arXiv:2103.13403.

Summary: SUSY - All-in-one

ATLAS Eur Phys J C 78,995 (2018), Phys Rev D 101,052002 (2020), arXix:2106.01676;

ATLAS HL-LHC ATL-PHYS-PUB-2018-048; ILC arXiv:2002.01239; LEP LEP LEPSUSYWG/02-04_1

Summary: SUSY - All-in-one

ATLAS Eur Phys J C 78,995 (2018), Phys Rev D 101,052002 (2020), arXix:2106.01676;

ATLAS HL-LHC ATL-PHYS-PUB-2018-048; ILC arXiv:2002.01239; LEP LEP LEPSUSYWG/02-04.1

- SUSY is not excluded.
- Even Plain vanilla SUSY is not excluded.
- HL-LHC might well discover SUSY, becuase future pp machines have
 - discovery potential to very high masses
 - but to put it bluntly NO exclusion potential: there will always be loopholes.
- Future TeV-scale ee machines on the other hand have
 - Full discovery and exclusion potential up to the kinematic limit

- SUSY is not excluded.
- Even Plain vanilla SUSY is not excluded.
- HL-LHC might well discover SUSY, becuase future pp machines have
 - discovery potential to very high masses
 - but to put it bluntly NO exclusion potential: there will always be loopholes.
- Future TeV-scale ee machines on the other hand have
 - Full discovery and exclusion potential up to the kinematic limit

- SUSY is not excluded.
- Even Plain vanilla SUSY is not excluded.
- HL-LHC might well discover SUSY, becuase future pp machines have
 - discovery potential to very high masses
 - but to put it bluntly NO exclusion potential: there will always be loopholes.
- Future TeV-scale ee machines on the other hand have
 - Full discovery and exclusion potential up to the kinematic limit

- SUSY is not excluded.
- Even Plain vanilla SUSY is not excluded.
- HL-LHC might well discover SUSY, becuase future pp machines have
 - discovery potential to very high masses
 - but to put it bluntly NO exclusion potential: there will always be loopholes.
- Future TeV-scale ee machines on the other hand have
 - Full discovery and exclusion potential up to the kinematic limit

- SUSY is not excluded.
- Even Plain vanilla SUSY is not excluded.
- HL-LHC might well discover SUSY, becuase future pp machines have
 - discovery potential to very high masses
 - but to put it bluntly NO exclusion potential: there will always be loopholes.
- Future TeV-scale ee machines on the other hand have
 - Full discovery and exclusion potential up to the kinematic limit

- SUSY is not excluded.
- Even Plain vanilla SUSY is not excluded.
- HL-LHC might well discover SUSY, becuase future pp machines have
 - discovery potential to very high masses
 - but to put it bluntly NO exclusion potential: there will always be loopholes.
- Future TeV-scale ee machines on the other hand have
 - Full discovery and exclusion potential up to the kinematic limit

- SUSY is not excluded.
- Even Plain vanilla SUSY is not excluded.
- HL-LHC might well discover SUSY, becuase future pp machines have
 - discovery potential to very high masses
 - but to put it bluntly NO exclusion potential: there will always be loopholes.
- Future TeV-scale ee machines on the other hand have
 - Full discovery and exclusion potential up to the kinematic limit

- SUSY is not excluded.
- Even Plain vanilla SUSY is not excluded.
- HL-LHC might well discover SUSY, because future pp machines have
 - Take-home message disco
 - but looph
- Future Te
 - Full c

 Without a TeV scale lepton-collider, we would not be able exclude SUSY further than today at the end of this century. LEP2++ would be the final word.

Except if a future pp machine discovers

ays be

mit

- SUSY is not excluded.
- Even Plain vanilla SUSY is not excluded.
- HL-LHC might well discover SUSY, because future pp machines have Take-home message
 - disco
 - but looph
- Future Te
 - Full c

 Without a TeV scale lepton-collider, we would not be able exclude SUSY further than today at the end of this century. LEP2++ would be the final word.

 Except if a future pp machine discovers SUSY, which is a problem we'd like to have! ays be

mit

16/17

LHC Run 3 teaser: Maybe...

Backup

BACKUP SLIDES

Summary: ILC projection on Higgsinos and $\tilde{\tau}$:s

From arXiv:2002.01239

From arXiv:2105.08616

SUSY@LHC: Does this make us depressed?

SUSY@LHC: No! Read the fine-print!

Only a selection of available mass limits. Probe *up to* the quoted mass limit for m ≈0 GeV unless stated otherwise

Latest Atlas (13 TeV, 36 and 139 fb⁻¹) on higgsinos

arXiv:1803.02762

ATLAS-CONF-2019-01

Loop-hole free SUSY searches

- All is known for given masses, due to SUSY-principle: "sparticles couples as particles".
- This doesn't depend on the SUSY breaking mechanism!
- Obviously: There is one NLSP.

Loop-hole free SUSY searches

- All is known for given masses, due to SUSY-principle: "sparticles couples as particles".
- This doesn't depend on the SUSY breaking mechanism!
- Obviously: There is one NLSP.

So, at an LC:

- Model independent exclusion/ discovery reach in M_{NLSP} – M_{LSP} plane.
- Repeat for all NLSP:s.
- Cover entire parameter-space in a hand-full of plots
- NLSP search ↔ "simplified models" @ LHC!

Simplified models

- Simplified methods at hadron and lepton machines are different beasts.
- At lepton machines they are quite model independent, at LHC model dependent.
- A few examples (м.в. arXiv:1308.1461)
 μ̃_R NLSP
 τ̄₁ NLSP (minimal σ).

Simplified models

- Simplified methods at hadron and lepton machines are different beasts.
- At lepton machines they are quite model independent, at LHC model dependent.
- A few examples (M.B. arXiv:1308.1461)
 - \bullet $\tilde{\mu}_{R}$ NLSP
 - $\tilde{\tau}_1$ NLSP (minimal σ).

Simplified models

 Simplified methods at hadron and lepton machines are different beasts.

• At lepton machines they are c At ILC independ Both discover and exclude NLSPs up to model de some GeV:s from the kinematic limit,

 A few exa whatever the NLSP is, and whatever the arXiv:1308.1461) rest of the spectrum is!

- $\tilde{\mu}_R$ NLSr
- $\tilde{\tau}_1$ NLSP (minimal σ).

²⁵⁰ [GeV] W_{LSP} [GeV]

NLSP : μ
_p

Exclusion

Discovery

2 244 246 248 250 M_{NI SP} [GeV]

NLSP : ũո

Discovery

Latest Atlas (13 TeV, 36 fb⁻¹) and LEP on sleptons

This is a *combined* limit, assuming $\tilde{\mu}_L, \tilde{\mu}_R, \tilde{e}_L$ and \tilde{e}_L all have the same mass !!!

This is \tilde{e}_R , $\tilde{\mu}_R$ and $\tilde{\tau}_R$ only, separately!

In real life: LEP $\tilde{\tau}$ limits

NB: a $\tilde{\tau}$ as light as 26.3 GeV is *not* excluded!

In real life: LEP $\tilde{\tau}$ limits

With 1000 times the luminosity and no trigger, the ILC at 250 will push the limits for all possible NLSPs to close to 125 GeV, and $\Delta(M) \approx 0$. The area covered will \sim double the LEP ones. They are in the most compelling region of parameter-space.

- These will be rock-solid limits.
- Or discoveries

NB: a $\tilde{\tau}$ as light as 26.3 GeV is **not** excluded!

In real life: LEP $\tilde{\tau}$ limits

With 1000 times the luminosity and no trigger, the ILC at 250 will push the limits for all possible NLSPs to close to 125 GeV, and $\Delta(M) \approx 0$. The area covered will \sim double the LEP ones. They are in the most compelling region of parameter-space.

- These will be rock-solid limits.
- Or discoveries!

NB: a $\tilde{\tau}$ as light as 26.3 GeV is **not** excluded!

Why would one expect the spectrum to be compressed?

Natural SUSY:

•
$$m_Z^2 = 2 \frac{m_{Hu}^2 \tan^2 \beta - m_{Hd}^2}{1 - \tan^2 \beta} - 2 | \mu$$

- \Rightarrow Low fine-tuning \Rightarrow $\mu = \mathcal{O}(\text{weak scale}).$
- Wino-like LSP: Same conclusion
- Only for Bino-like LSP, non-compressed occurs
- But also: the data ...

quite generic:

Why would one expect the spectrum to be compressed?

Natural SUSY:

•
$$m_Z^2 = 2 \frac{m_{H_U}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 | \mu$$

• \Rightarrow Low fine-tuning \Rightarrow

- \Rightarrow Low fine-tuning = $\mu = \mathcal{O}(\text{weak scale}).$
- Wino-like LSP: Same conclusion.
- Only for Bino-like LSP, non-compressed occurs
- But also: the data ...

quite generic:

Why would one expect the spectrum to be compressed?

Natural SUSY:

•
$$m_Z^2 = 2 \frac{m_{H_U}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 |\mu|$$

• \Rightarrow Low fine-tuning \Rightarrow

- $\mu = \mathcal{O}(\text{weak scale}).$
- Wino-like LSP: Same conclusion.
- Only for Bino-like LSP, non-compressed occurs
- But also: the data ...

quite generic:

Why would one expect the spectrum to be compressed?

- Natural SUSY:
 - $m_Z^2 = 2 \frac{m_{H_u}^2 \tan^2 \beta m_{H_d}^2}{1 \tan^2 \beta} 2 | \mu$
 - \Rightarrow Low fine-tuning \Rightarrow $\mu = \mathcal{O}(\text{weak scale}).$
- Wino-like LSP: Same conclusion.
- Only for Bino-like LSP, non-compressed occurs
- But also: the data ...

quite generic:

One approach: Global fits with prejudice

pMSSM11 fit by Mastercode to LHC13/LEP/g-2/DM(=100% LSP)/precision observables (arXiv:1710.11091):

Sparticle Mass-spectrum

One approach: Global fits with prejudice

pMSSM11 fit by Mastercode to LHC13/LEP/g-2/DM(=100% LSP)/precision observables (arXiv:1710.11091):

One approach: Global fits with prejudice

pMSSM11 fit by Mastercode to LHC13/LEP/g-2/DM(=100% LSP)/precision observables (arXiv:1710.11091):

One approach: Global fits with prejudice

pMSSM11 fit by Mastercode to LHC13/LEP/g-2/DM(=100% LSP)/precision observables (arXiv:1710.11091):

 $M_{\widetilde{\chi}_1^{\pm}}$ - $M_{\widetilde{\chi}_1^{0}}$ plane

One approach: Global fits with prejudice

- On the 7 TeV plot, with LEP (brown) and the low Δ(M) search (magenta)...
- At ILC: Various benchmarks studied w/ detailed simulation: $M_{\tilde{\chi}_1^0} = 100\text{-}170 \text{ GeV}, \ \Delta(M) = 0.8 \text{ to } 20 \text{ GeV}.$
- Projected discovery reaches for LHC, HL-LHC, ILC-500, and ILC-1000

- On the 7 TeV plot, with LEP (brown) and the low Δ(M) search (magenta)...
- At ILC: Various benchmarks studied w/ detailed simulation: $M_{\tilde{\chi}_1^0} = 100\text{-}170 \text{ GeV}, \ \Delta(M) = 0.8 \text{ to } 20 \text{ GeV}.$
- Projected discovery reaches for LHC, HL-LHC, ILC-500, and ILC-1000.

- On the 7 TeV plot, with LEP (brown) and the low Δ(M) search (magenta)...
- At ILC: Various benchmarks studied w/ detailed simulation: $M_{\tilde{\chi}_1^0} = 100\text{-}170 \text{ GeV}, \ \Delta(M) = 0.8 \text{ to } 20 \text{ GeV}.$
- Projected discovery reaches for LHC, HL-LHC, ILC-500, and ILC-1000.

- On the 7 TeV plot, with LEP (brown) and the low Δ(M) search (magenta)...
- At ILC: Various benchmarks studied w/ detailed simulation: $M_{\tilde{\chi}_1^0} = 100\text{-}170 \text{ GeV}, \ \Delta(M) = 0.8 \text{ to } 20 \text{ GeV}.$
- Projected discovery reaches for LHC, HL-LHC, ILC-500, and ILC-1000.

- On the 7 TeV plot, with LEP (brown) and the low Δ(M) search (magenta)...
- At ILC: Various benchmarks studied w/ detailed simulation: $M_{\tilde{\chi}_1^0} = 100\text{-}170 \text{ GeV}, \ \Delta(M) = 0.8 \text{ to } 20 \text{ GeV}.$
- Projected discovery reaches for LHC, HL-LHC, ILC-500, and ILC-1000.

- On the 7 TeV plot, with LEP (brown) and the low Δ(M) search (magenta)...
- At ILC: Various benchmarks studied w/ detailed simulation: $M_{\tilde{\chi}_1^0} = 100\text{-}170 \text{ GeV}, \Delta(M) = 0.8 \text{ to } 20 \text{ GeV}.$
- Projected discovery reaches for LHC, HL-LHC, ILC-500, and ILC-1000.

Latest Atlas (13 TeV, 36 fb⁻¹) on EWkinos

arXiv:1712.08119

 \sim same analysis as shown in talk. Only extends below the $M_{\tilde{\chi}_2^0}$ (or $M_{\tilde{\chi}_1^\pm}$) $> 2 M_{\tilde{\chi}_2^0}$ line. No progress in Higgsino region !

arXiv:1803.02762

 $^{\mathrm{m}(\chi_{2}^{0})^{\mathrm{m}(\chi_{1}^{+})}}$ Same channel as in talk. Look at in talk. $\Delta(M)\sim 1~\mathrm{GeV}$ and $_{2}^{0}$ (or $M_{\tilde{\chi}_{2}^{0}}\sim 160~\mathrm{GeV}$. The actual limit is the LEP one. Wrongly represented!

- Vary relative signs of μ, M₁, and M₂
- For $\mu > M_2$
- ullet or $\mu < M_2$
- Conclusion: Whether the Z or the H decay-mode of $\tilde{\chi}_2^0$ dominates is pure speculation and
- The exclusion-region is the intersection of the two plots, not the union!

- Vary relative signs of μ, M₁, and M₂
- For $\mu > M_2$
- or $\mu < M_2$
- Conclusion: Whether the Z or the H decay-mode of $\tilde{\chi}_2^0$ dominates is pure speculation and
- The exclusion-region is the intersection of the two plots, not the union!

- Vary relative signs of μ, M₁, and M₂
- For $\mu > M_2$
- or $\mu < M_2$
- Conclusion: Whether the Z or the H decay-mode of $\tilde{\chi}_2^0$ dominates is pure speculation and
- The exclusion-region is the intersection of the two plots, not the union!

Why is the decay-mode an issue? Here's why:

- Vary relative signs of μ, M₁, and M₂
- For $\mu > M_2$
- or $\mu < M_2$
- Conclusion: Whether the Z or the H decay-mode of $\tilde{\chi}_2^0$ dominates is pure speculation and
- The exclusion-region is the intersection of the two plots, not the union!

10/17

- Vary relative signs of μ, M₁, and M₂
- For $\mu > M_2$
- ullet or $\mu < \emph{M}_2$
- Conclusion: Whether the Z or the H decay-mode of $\tilde{\chi}_2^0$ dominates is pure speculation and
- The exclusion-region is the intersection of the two plots, not the union!

- Vary relative signs of μ, M₁, and M₂
- For $\mu > M_2$
- or $\mu < M_2$
- Conclusion: Whether the Z or the H decay-mode of $\tilde{\chi}_2^0$ dominates is pure speculation and
- The exclusion-region is the intersection of the two plots, not the union!

- Vary relative signs of μ, M₁, and M₂
- For $\mu > M_2$
- ullet or $\mu < \emph{M}_2$
- Conclusion: Whether the Z or the H decay-mode of $\tilde{\chi}_2^0$ dominates is pure speculation and
- The exclusion-region is the intersection of the two plots, not the union!

- Vary relative signs of μ, M₁, and M₂
- For $\mu > M_2$
- ullet or $\mu < \emph{M}_2$
- Conclusion: Whether the Z or the H decay-mode of $\tilde{\chi}_2^0$ dominates is pure speculation and
- The exclusion-region is the intersection of the two plots, not the union!

- Higgsino LSP
- Wino LSP
- or Bino LSP
- ullet Note: Can vary by \sim factor 2
- Note: Exponential fall with mass
- \Rightarrow Will extend far beyond current at high $\Delta(M)$, but will stay below the $M_{NLSP} = 2 \times M_{LSP}$ line (see backup...)

- Higgsino LSP
- Wino LSP
- or Bino LSP
- ullet Note: Can vary by \sim factor 2
- Note: Exponential fall with mass
- \Rightarrow Will extend far beyond current at high $\Delta(M)$, but will stay below the $M_{NLSP} = 2 \times M_{LSP}$ line (see backup...)

- Higgsino LSP
- Wino LSP
- or Bino LSP
- ullet Note: Can vary by \sim factor 2
- Note: Exponential fall with mass
- \Rightarrow Will extend far beyond current at high $\Delta(M)$, but will stay below the $M_{NLSP} = 2 \times M_{LSP}$ line (see backup...)

- Higgsino LSP
- Wino LSP
- or Bino LSP
- Note: Can vary by \sim factor 2
- Note: Exponential fall with mass
- \Rightarrow Will extend far beyond current at high $\Delta(M)$, but will stay below the $M_{NLSP} = 2 \times M_{LSP}$ line (see backup...)

- Higgsino LSP
- Wino LSP
- or Bino LSP
- ullet Note: Can vary by \sim factor 2
- Note: Exponential fall with mass
- \Rightarrow Will extend far beyond current at high $\triangle(M)$, but will stay below the $M_{NLSP} = 2 \times M_{LSP}$ line (see backup...)

- Consider fixed m_{qq}, at two masses: First rise w/ β, then fall-off w/ 1/s.
- Fold this with rapidly falling pdf:s (in particular for the sea)
- ⇒ m_{qq} (linear) function of bino-mass

- Consider fixed m_{qq}, at two masses: First rise w/ β, then fall-off w/ 1/s.
- Fold this with rapidly falling pdf:s (in particular for the sea)
- $\Rightarrow m_{qq}$ (linear) function of bino-mass

- Consider fixed m_{qq}, at two masses: First rise w/ β, then fall-off w/ 1/s.
- Fold this with rapidly falling pdf:s (in particular for the sea)
- $\Rightarrow m_{qq}$ (linear) function of bino-mass

- fall-off • m_{qq} (linear) function of bosino-mass
 - At these mass-ratios, missing p_T is proportional to m_{qq}
 - ⇒ missing p_T increases linearly with bosino-mass.
 - ⇒ can increase missing p_T-cut linearly when looking for higher masses, with the same efficiency
 - Then the background decreases as much.
 - S/B remains constant along lines in M_v[±] vs. M_{LSP}

- fall-off • m_{qq} (linear) function of bosino-mass
 - At these mass-ratios, missing p_T is proportional to m_{qq}
 - ⇒ missing p_T increases linearly with bosino-mass.
 - ⇒ can increase missing p_T-cut linearly when looking for higher masses, with the same efficiency
 - Then the background decreases as much.
 - S/B remains constant along lines in M_{z±} vs. M_{LSP}

- - At these mass-ratios, missing p_T is proportional to m_{qq}
 - ⇒ missing p_T increases linearly with bosino-mass.
 - ⇒ can increase missing p_T-cut linearly when looking for higher masses, with the same efficiency
 - Then the background decreases as much.
 - S/B remains constant along lines in M_{X̃1} vs. M_{LSP}

- - At these mass-ratios, missing p_T is proportional to m_{qq}
 - ⇒ missing p_T increases linearly with bosino-mass.
 - ⇒ can increase missing p_T-cut linearly when looking for higher masses, with the same efficiency
 - Then the background decreases as much.
 - S/B remains constant along lines in M_{X̃1} vs. M_{LSP}

- - At these mass-ratios, missing p_T is proportional to m_{qq}
 - → missing p_T increases
 linearly with bosino-mass.

 Uptake

Expect that the limit sticks to the same diagonal as energy is increased.

- Then the background decreases as much.
- S/B remains constant along lines in M_{X̃1} vs. M_{LSP}

Aspects of the spectrum : $\Delta(M)$

Yet another angle: $\Delta(M)$ for $\tilde{\chi}_1^{\pm}$ vs. M_{LSP}

- For Higgsino LSP
- For Wino LSF
- Note large spread possible!

Aspects of the spectrum : $\Delta(M)$

Yet another angle: $\Delta(M)$ for $\tilde{\chi}_1^{\pm}$ vs. M_{LSP}

- For Higgsino LSP
- For Wino LSP
- Note large spread possible

400

-2 200

600

800 1000 M(LSP)

Aspects of the spectrum : $\Delta(M)$

Yet another angle: $\Delta(M)$ for $\tilde{\chi}_1^{\pm}$ vs. M_{LSP}

- For Higgsino LSP
- For Wino LSP
- Note large spread possible!

-2 200

600

800 1000 M(LSP)

Higgsino LSP.

- Zoom in. The line is the absolute limit mentioned in the BB.
- Reason:
 arXiv:1703.09675
 considers only SM effects on the mass-splitting, ie. that M₁ and M₂ >> μ
- Same for Wino LSP.

- Higgsino LSP.
- Zoom in. The line is the absolute limit mentioned in the BB.
- Reason:
 arXiv:1703.09675
 considers only SM effects on
 the mass-splitting, ie. that M₁
 and M₂ >> μ
- Same for Wino LSP.

- Higgsino LSP.
- Zoom in. The line is the absolute limit mentioned in the BB.
- Reason:

arXiv:1703.09675 considers *only SM* effects on the mass-splitting, ie. that M_1 and $M_2 >> \mu$

Same for Wino LSP.

- Higgsino LSP.
- Zoom in. The line is the absolute limit mentioned in the BB.
- Reason:

arXiv:1703.09675 considers *only SM* effects on the mass-splitting, ie. that M_1 and $M_2 >> \mu$

Same for Wino LSP.

second opinion: feynhiggs

SUSY In The Briefing-book: Wino/Higgsino LSP - Very low $\Delta(M)$ Sources

- Two methods: "Disappearing tracks" and "Mono-X"
 - "Disappearing tracks"
 - "Mono-X"
- arxiv:1805.00015, Based on DELPHES with ATLAS-card (⇒ LHC PU...)
- Both from the HE/HL-LHC input to ESU (not FCChh)
- Systematics-limited. Both ATLAS and CMS state ~ 10% in existing "Mono-X" searches (PU 1/20 of FCChh)

SUSY In The Briefing-book: Wino/Higgsino LSP - Very low $\Delta(M)$ Sources

- Two methods: "Disappearing tracks" and "Mono-X"
 - "Disappearing tracks"
 - "Mono-X"
- arxiv:1805.00015, Based on DELPHES with ATLAS-card (⇒ LHC PU...)
- Both from the HE/HL-LHC input to ESU (not FCChh)
- Systematics-limited. Both ATLAS and CMS state ~ 10% in existing "Mono-X" searches (PU 1/20 of FCChh)

SUSY In The Briefing-book: Wino/Higgsino LSP - Very low $\Delta(M)$ Sources

- Two methods: "Disappearing tracks" and "Mono-X"
 - "Disappearing tracks"
 - "Mono-X"
- arxiv:1805.00015, Based on DELPHES with ATLAS-card (⇒ LHC PU...)
- Both from the HE/HL-LHC input to ESU (not FCChh)
- Systematics-limited. Both ATLAS and CMS state ~ 10% in existing "Mono-X" searches (PU 1/20 of FCChh)

6