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Introduction.

e LUXE (Laser Und XFEL
Experiment) is a proposed
experiment at DESY.

e One of the main goals is to
measure the positron rate as a
function of the laser intensity

arameter ¢, defined as
e The experiment's primary aim is to P 5

investigate the transition from the Me€r
well-probed perturbative into the =~ W

. . WEEcr €, .- laser/critical field strength
non-perturbative regime of QED

that occurs at very high energies.
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1. High-energy electrons from XFEL are
collided with a terawatt-scale laser pulse,
enabling nonlinear Compton scattering.
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3.) e+e- are separated by a magnet.
Positrons then impinge on a four-
layered Silicon pixel detector

2.) A subsequent e+e- pair is
created via the non-linear
Breit Wheeler pair creation

Challenge. maintain good linearity up to high

e The tracking problem can be
formulated as a quadratic
unconstrained binary optimization
(QUBO), allowing the algorithm
to be mapped onto a quantum
computer.
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4.) Theoretically, a slower positron

production rate is expected after the the
critical field is reached.

multiplicities, keep a low background rate below

10-3 per BX at low ¢

Goal. benchmark performance against
classical methods using Graph Neural Network
or a Combinatorial Kalman Filter.

Sample. Monte Carlo simulated event
samples and a custom detector simulation

Minimizing the QUBO with a
quantum algorithms returns the

best set of triplets.
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Key questions.

» How does the performance depend on ¢?

» How does quantum noise affect the results?

» What quantum algorithm is optimal?

o What are the quantum computer requirements to
run efficiently?

» How does the choice of quantum computer affect
the results?

Multiple Scattering included
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Kinematic Fitting CERN
at Future e*e- Higgs Factories \

Kinematically Constrained Fitting

Lot of knowledge in e+e- events .bgyond the raw meas_urements: | X2T (77, g’ *) = (§ — ﬁ)T L (7 — 1) + NI fﬁ(ﬁ, g)
* known four-momentum of the initial state, e.g. 2py =0 — hard constraint
* masses of intermediate particles, e.g. M(jj)) = My or M, — hard or constraint
* know which quantities are very well measured and which less so — error parametrisation
=> formulate hypothesis under which to interpret the event ) PR o o o
=> test hypothesis by minimizing X2 underconstraints by adjusting particle momenta znxg - j?rvq (é/ — 1) +2F; - A=0,
X = e A=Y
R Vaxy = 2f
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Exploit this to
* Improve precision on observables, e.g. invariant masses

* determine unmeasured quantities (e.g. neutrino momentum)
» find best jet pairing

e Constrat One OPALFitt One NewtonFitt » select / reject events which match / don't hypothesis
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Including ISR & Co Software Implementation

Good Fits: 55 % = C b) Good Fits: 55 %

0.2 GeV
&

> 1000 |

Additional FitObject with p, as

pseudo-measured parameter:

* “Measured” value = p, balance

* “Error”. o of ISR spectrum
transformed into a Gaussian

FitObject Encapsulates all details of the parametrization, calculates its
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own contributions to global y2 and its derivatives, calculates derivatives of 4-
vector components wrt parameters.
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s 7500 Constraint. calculates its value from 4-vectors of FitObjects and its
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_ B—1 derivatives wrt the 4-vector components of the FitObjects.
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Dz 90FE . |E... Fitt From FitObjects
o 1\ ® L ILLer. Sets up and solves the ) ~
. p X u . . " P r—1 T v+1
z = sign(p,.) ( E” ) system of equations, administers list of ( L _D_("O ’ ‘g'z,;T )(’)
max - C SR— . . . — P FU 4 FV . gv T\ 3,,+1
= /3ot (2 | FitObjects and Constraints. i S i Of !
] = & 5 | (,,) RMS: 3.249 f
. . From ConstraintObjects
Qua“ty Of f|tted phOtOn pz k Create FitObjECtS /' E  theta phi dE dtheta dphi mass
' >S40 """  JetFitObject jetl (44., 1.2, 0.087, 5.0, 0.2, 0.1, 0.);
in WW >4J @ 500 GeV e s (2 jets) — Jﬁtpiwbgi& %gtz 246.: 1.8, 3.120, 5.0, 0.2, 0.1, o.;;

A GeV
Pay [5CY] // Constraint O*sum(E) + l*sum(px) + O*sum(py) + O*sum(pz) = 0
MomentumConstraint pxconstraint (0, 1, 0, 0, 0);
. . pxconstraint.addToFOList (jetl);
Create Constrain pxconstraint.addToFOList (jet2);
pr ' // Constraint O0*sum(E) + O*sum(px) + l*sum(py) + O*sum(pz) = 0
Zpy = MomentumConstraint pyconstraint (0, 0, 1, 0, 0);

. - pyconstraint.addToFOList (jetl);
Invariant mass = 90GeV pyconstraint.addToFOList (jet2);
// Constraint total mass = 90

MassConstraint mconstraint (90);
mconstraint.addToFOList (jetl);
mconstraint.addToFOList (jet2);

Impact on Higgs reconstruction

Tell constraints over which
FitObjects they should sum

OPALFitter fitter:;
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o0 E 3= 100 - '--{'5'0 s MarlinKinfit. https://github.com/iLCSoft/MarlinKinfit
x PRI ] M H Example processors. https://github.com/ILCSoft/MarlinKinfitProcessors
0, T T T T Tutorial. https://github.com/ILDAnaSoft/MarlinKinfitTutorial
M_H
p Optimisation of step length choice in NewtonFitter
Transmit full ErrorFlow covariance matrix to FitObjects Fundamentally new minimizer, e.g. ML-based?
Implement correlations between FitObjects, e.g. to Application to multi-jet analyses,
model jet clustering errors e.g.ee — ZH, WW, tt, ZHH, ...
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