# Positron Track Reconstruction for LUXE using a Quantum Computer

Arianna Crippa<sup>1</sup>, Lena Funcke<sup>2</sup>, Tobias Hartung<sup>3,6</sup>, Beate Heinemann<sup>1,4</sup>, Karl Jansen<sup>1,5</sup>, **Annabel Kropf**<sup>1,4</sup>, Stefan Kühn<sup>6</sup>, Federico Meloni<sup>1</sup>, David Spataro<sup>1,4</sup>, Cenk Tüysüz<sup>1,5</sup>, Yee Chinn Yap<sup>1</sup>

<sup>1</sup>Deutsches Elektron-Synchrotron DESY <sup>5</sup>Humboldt-Universität zu Berlin <sup>2</sup>Massachusetts Institute of Technology, MIT <sup>3</sup>University of Bath <sup>6</sup>CaSToRC, The Cyprus Institute <sup>4</sup>Albert-Ludwigs-Universität Freiburg

### Introduction.

- LUXE (Laser Und XFEL Experiment) is a proposed experiment at DESY.
- The experiment's primary aim is to investigate the transition from the

 One of the main goals is to measure the positron rate as a function of the laser intensity parameter ξ, defined as

 $\begin{array}{cc} m_e \epsilon_L \\ \hline m_e \end{array} & clectron mass \\ \omega_L \\ \hline claser frequency \end{array}$ 

 The tracking problem can be formulated as a quadratic unconstrained binary optimization (QUBO), allowing the algorithm to be mapped onto a *quantum computer*.



well-probed *perturbative into the non-perturbative regime* of QED that occurs at very high energies.





**Challenge.** maintain good linearity up to high multiplicities, keep a low background rate below 10-3 per BX at low  $\xi$ 

**Goal.** benchmark performance against classical methods using Graph Neural Network or a Combinatorial Kalman Filter.

Sample.Monte Carlo simulated eventsamples and a custom detector simulation

Minimizing the QUBO with a quantum algorithms returns the best set of triplets.

## Key questions.

- How does the performance depend on  $\xi$ ?
- How does quantum noise affect the results?
- What quantum algorithm is optimal?
- What are the quantum computer requirements to run efficiently?
- How does the choice of quantum computer affect the results?







## Kinematic Fitting at Future e<sup>+</sup>e<sup>-</sup> Higgs Factories

Benno List<sup>1,2</sup>, Jenny List<sup>1,2</sup> <sup>1</sup>Deutsches Elektron-Synchrotron DESY <sup>2</sup>Currently at CERN

### Kinematically Constrained Fitting.

#### Lot of knowledge in e+e- events beyond the raw measurements:

- known four-momentum of the initial state, e.g.  $\Sigma py = 0$
- masses of intermediate particles, e.g.  $M(jj) = M_H$  or  $M_Z$
- know which quantities are very well measured and which less so
- => formulate hypothesis under which to interpret the event
- => test hypothesis by minimizing  $\chi^2$  underconstraints by adjusting particle momenta

# gs Factories

 $\rightarrow$  hard constraint

 $\rightarrow$  hard or soft constraint

 $\rightarrow$  error parametrisation



 $\chi_T^2\left(\vec{\eta}, \vec{\xi}, \vec{\lambda}\right) = (\vec{y} - \vec{\eta})^T \cdot V^{-1} \cdot (\vec{y} - \vec{\eta}) + 2\vec{\lambda}^T \cdot \vec{f}\left(\vec{\eta}, \vec{\xi}\right)$ 

 $\nabla_{\eta} \chi_T^2 = -2V^{-1} \cdot (\vec{y} - \vec{\eta}) + 2\vec{F}_n^T \cdot \vec{\lambda} = \vec{0},$  $\nabla_{\xi} \chi_T^2 = \vec{F}_{\xi}^T \cdot \vec{\lambda} = \vec{0},$  $\nabla_{\lambda} \chi_T^2 = 2 \vec{f} (\vec{\eta}, \vec{\xi}) = \vec{0},$ 



#### **Exploit this to**

- improve precision on observables, e.g. invariant masses
- determine unmeasured quantities (e.g. neutrino momentum)

• find best jet pairing

• select / reject events which match / don't hypothesis

## Including ISR & Co.

Additional FitObject with p<sub>z</sub> as pseudo-measured parameter:

- "Measured" value =  $p_z$  balance
- "Error":  $\sigma$  of ISR spectrum transformed into a Gaussian





## **Software Implementation**

**FitObject.** Encapsulates all details of the parametrization, calculates its own contributions to global  $\chi^2$  and its derivatives, calculates derivatives of 4-vector components wrt parameters.

**Constraint.** Calculates its value from 4-vectors of FitObjects and its derivatives wrt the 4-vector components of the FitObjects.

Fitter. Sets up and solves the



Quality of fitted photon p<sub>z</sub> in WW->4j @ 500 GeV

#### **Impact on Higgs reconstruction**. In ee $\rightarrow$ ZH $\rightarrow \mu\mu$ bb at 250 GeV

nRecHMassFitOK 1500 ISRfitted ----- ISRnotfitted c.f. talk by 1200 nofit hRecHMassFitOK Yasser Radkhorrami ----- JEREflow 1000 **Inclusion of ISR**  $\sigma$ (Ejet) = 30%  $\sqrt{E}$ ----- JER30 removes bias nofit 800 while still improving resolution. 600 400 100 200 150 50 250 200  $M_H$ 100 150 200 250 50 ΜΗ

system of equations, administers list of FitObjects and Constraints.

dE dtheta dphi mass E theta phi Create FitObjects JetFitObject jet1 (44., 1.2, 0.087, 5.0, 0.2, 0.1, 0.); JetFitObject jet2 (46., 1.8, 3.120, 5.0, 0.2, 0.1, 0.); (2 jets) // Constraint 0\*sum(E) + 1\*sum(px) + 0\*sum(py) + 0\*sum(pz) = 0 MomentumConstraint pxconstraint (0, 1, 0, 0, 0); pxconstraint.addToFOList (jet1); Create Constraints: pxconstraint.addToFOList (jet2);  $\Sigma p_{\rm x} = 0$ , // Constraint 0\*sum(E) + 0\*sum(px) + 1\*sum(py) + 0\*sum(pz) = 0  $\Sigma p_{\rm v} = 0$ , MomentumConstraint pyconstraint (0, 0, 1, 0, 0); pyconstraint.addToFOList (jet1); Invariant mass = 90GeV pyconstraint.addToFOList (jet2); // Constraint total mass = 90 MassConstraint mconstraint (90); mconstraint.addToFOList (jet1); Tell constraints over which mconstraint.addToFOList (jet2); FitObjects they should sum OPALFitter fitter; fitter.addFitObject (jet1);
fitter.addFitObject (jet2); Create the Fitter Engine Tell the Fitter which Objects fitter.addConstraint (pxconstraint); > fitter.addConstraint (pyconstraint); are to be fitted, fitter.addConstraint (mconstraint); and which Constraints are fitter.initialize(); to be observed double prob = fitter.fit(); Perform the Fit

MarlinKinfit. <u>https://github.com/iLCSoft/MarlinKinfit</u> Example processors. <u>https://github.com/iLCSoft/MarlinKinfitProcessors</u> Tutorial. https://github.com/ILDAnaSoft/MarlinKinfitTutorial

## Next Steps.

- Transmit full ErrorFlow covariance matrix to FitObjects
  Implement correlations between FitObjects, e.g. to model jet clustering errors
- Optimisation of step length choice in NewtonFitter
  Fundamentally new minimizer, e.g. ML-based?
  Application to multi-jet analyses, e.g. ee → ZH, WW, tt, ZHH, ...

contact: jenny.list@desy.de

#### Learn more:

- M. Beckmann, B. List, J. List, Nucl.Instrum.Meth.A 624 (2010) 184-191, <a href="https://doi.org/10.1016/j.nima.2010.08.107">https://doi.org/10.1016/j.nima.2010.08.107</a>
- B. List, J. List, LC-TOOL-2009-001, <a href="https://bib-pubdb1.desy.de/record/88030">https://bib-pubdb1.desy.de/record/88030</a>
- B. List, Constrained Fits, in Data Analysis in High Energy Physics: A Practical Guide to Statistical Methods, Wiley-VCH, ISBN 978-3527410583

