Positron Track Reconstruction for LUXE using a Quantum Computer

Arianna Crippa ${ }^{1}$, Lena Funcke ${ }^{2}$, Tobias Hartung ${ }^{3,6}$, Beate Heinemann ${ }^{1,4}$, Karl Jansen ${ }^{1,5}$ Annabel Kropf ${ }^{1,4}$, Stefan Kühn ${ }^{6}$, Federico Meloni ${ }^{1}$, David Spataro ${ }^{1,4}$, Cenk Tüysüz ${ }^{1,5}$, Yee Chinn Yap ${ }^{1}$

Introduction.

- LUXE (Laser Und XFEL Experiment) is a proposed experiment at DESY.
- The experiment's primary aim is to investigate the transition from the well-probed perturbative into the non-perturbative regime of QED that occurs at very high energies.
- One of the main goals is to measure the positron rate as a function of the laser intensity parameter ξ, defined as

$$
\xi=\frac{m_{e} \epsilon_{L}}{\omega_{L} \epsilon_{c r}} \quad \begin{aligned}
& m_{e}: \text { electron mass } \\
& \omega_{\mathrm{L}}: \text { laser frequency } \\
& \epsilon_{\mathrm{L}, \mathrm{cr}}: \text { laser/critical field strength }
\end{aligned}
$$

- The tracking problem can be formulated as a quadratic unconstrained binary optimization (QUBO), allowing the algorithm to be mapped onto a quantum computer.

1. High-energy electrons from XFEL are collided with a terawatt-scale laser pulse,

2.) A subsequent e+e-pair is created via the non-linear Breit Wheeler pair creation
3.) e+e- are separated by a magnet. Positrons then impinge on a fourlayered Silicon pixel detector

4.) Theoretically, a slower positron production rate is expected after the the critical field is reached.

Challenge. maintain good linearity up to high multiplicities, keep a low background rate below $10-3$ per BX at low ξ

Goal. benchmark performance against classical methods using Graph Neural Network or a Combinatorial Kalman Filter.

Sample. Monte Carlo simulated event samples and a custom detector simulation

Minimizing the QUBO with a

 quantum algorithms returns the best set of triplets.$$
\left.\begin{array}{ll}
O(a, b, T)=\sum_{i=1}^{N} a_{i} T_{i}+\sum_{i}^{N} \sum_{j<i}^{N} b_{i j} T_{i} T_{j} \quad T_{i}, T_{j} \in\{0,1\} \\
\begin{array}{l}
\text { Weighting } \\
\text { triplet T_i with } \\
\text { quality a_i }
\end{array} & \text { Compatibility b_ij between two triplets }
\end{array}\right\} \begin{array}{ll}
-S(T i, T j), & \text { if }\left(T_{i}, T_{j}\right) \text { form a quadruplet, } \\
\zeta & \text { if }\left(T_{i}, T_{j}\right) \text { are in conflict, } \\
0 & \text { otherwise. }
\end{array} .
$$

Key questions.

How does the performance depend on ξ ?
How does quantum noise affect the results?

- What quantum algorithm is optimal?
- What are the quantum computer requirements to run efficiently?
- How does the choice of quantum computer affect the results?

Max. fake rate:
VQE: 0.18 Eigensolver: 0.16 GNN: 0.07

Kinematically Constrained Fitting.

Lot of knowledge in e+e- events beyond the raw measurements:

- known four-momentum of the initial state, e.g. $\Sigma p y=0$
- masses of intermediate particles, e.g. $M(j j)=M_{H}$ or M_{Z}
- know which quantities are very well measured and which less so
=> formulate hypothesis under which to interpret the event
$=>$ test hypothesis by minimizing $x 2$ underconstraints by adjusting particle momenta

Starting point Constrait contours

OPALFitter: Approximates constraint by tangential plane

NewtonFitter:
Approximates constraint
by tangential paraboloid
\rightarrow hard constraint
\rightarrow hard or soft constraint
\rightarrow error parametrisation

Method of Lagrange Multipliers

$$
\chi_{T}^{2}(\vec{\eta}, \vec{\xi}, \vec{\lambda})=(\vec{y}-\vec{\eta})^{T} \cdot V^{-1} \cdot(\vec{y}-\vec{\eta})+2 \vec{\lambda}^{T} \cdot \vec{f}(\vec{\eta}, \vec{\xi})
$$

$\nabla_{\eta} \chi_{T}^{2}=-2 V^{-1} \cdot(\vec{y}-\vec{\eta})+2 \vec{F}_{\eta}^{T} \cdot \vec{\lambda}=\overrightarrow{0}$,
$\nabla_{\xi} \chi_{T}^{2}=\vec{F}_{\xi}^{T} \cdot \vec{\lambda}=\overrightarrow{0}$, $\nabla_{\lambda} \chi_{T}^{2}=2 \vec{f}(\vec{\eta}, \vec{\xi})=\overrightarrow{0}$,

Exploit this to

- improve precision on observables, e.g. invariant masses
- determine unmeasured quantities (e.g. neutrino momentum)
- find best jet pairing
- select / reject events which match / don't hypothesis

Including ISR \& Co.

Additional FitObject with p_{z} as pseudo-measured parameter: - "Measured" value $=p_{z}$ balance

- "Error": σ of ISR spectrum transformed into a Gaussian
$\mathcal{P}\left(p_{\mathbf{z}, \gamma}\right)=\frac{\beta}{2 E_{\max }} \cdot\left|\frac{p_{\mathrm{z}, \gamma}}{E_{\max }}\right|^{\beta-1}$
$z=\operatorname{sign}\left(p_{\mathrm{z}, \gamma}\right)\left(\frac{\left|p_{\mathrm{z}, \gamma}\right|}{E_{\max }}\right)^{\beta}$
$\eta=\sqrt{2} \cdot \operatorname{erf}^{-1}(z)$
Quality of fitted photon p_{z} in WW->4j @ 500 GeV

Impact on Higgs reconstruction.
In ee \rightarrow ZH $\rightarrow \mu \mu \mathrm{bb}$ at 250 GeV

Next Steps.

- Transmit full ErrorFlow covariance matrix to FitObjects
- Implement correlations between FitObjects, e.g. to model jet clustering errors

Software Implementation.

FitObject. Encapsulates all details of the parametrization, calculates its own contributions to global $\chi 2$ and its derivatives, calculates derivatives of 4vector components wrt parameters.

Constraint. Calculates its value from 4-vectors of FitObjects and its derivatives wrt the 4 -vector components of the FitObjects.

Fitter. Sets up and solves the system of equations, administers list of FitObjects and Constraints.

MarlinKinfit. https://github.com/iLCSoft/MarlinKinfit
Example processors. https://github.com/iLCSoft/MarlinKinfitProcessors Tutorial. https://github.com/ILDAnaSoft/MarlinKinfitTutorial

- Optimisation of step length choice in NewtonFitter

Fundamentally new minimizer, e.g. ML-based?

- Application to multi-jet analyses,
e.g. ee $\rightarrow \mathrm{ZH}, \mathrm{WW}, \mathrm{tt}, \mathrm{ZHH}, \ldots$

