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Positron Track Reconstruction for LUXE 
using a Quantum Computer

● LUXE (Laser Und XFEL 
Experiment) is a proposed 
experiment at DESY. 

● The experiment's primary aim is to 
investigate the transition from the 
well-probed perturbative into the 
non-perturbative regime of QED 
that occurs at very high energies. 
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1. High-energy electrons from XFEL  are 
collided with a terawatt-scale laser pulse, 
enabling nonlinear Compton scattering.

2.) A subsequent e+e- pair is 
created via the non-linear 
Breit Wheeler pair creation

3.) e+e- are separated by a magnet. 
Positrons then impinge on a four-
layered Silicon pixel detector

● One of the main goals is to 
measure the positron rate as a 
function of the laser intensity 
parameter ξ, defined as

● The tracking problem can be 
formulated  as a quadratic 
unconstrained binary optimization 
(QUBO), allowing the algorithm 
to be mapped onto a quantum 
computer.

Silicon pixel detector

Magnet deflection

4.) Theoretically, a slower positron 
production rate is expected after the the 
critical field is reached.

Challenge. maintain good linearity up to high 
multiplicities,keep a low background rate below 
10−3 per BX at low ξ

Goal. benchmark performance against 
classical methods using Graph Neural Network 
or a Combinatorial Kalman Filter.

Minimizing the QUBO with a 
quantum algorithms returns the 
best set of triplets.

Key questions.
● How does the performance depend on ξ?
● How does quantum noise affect the results?
● What quantum algorithm is optimal?
● What are the quantum computer requirements to 

run efficiently?
● How does the choice of quantum computer affect 

the results?
Sample. Monte Carlo simulated event 
samples and a custom detector simulation 
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Laser pulse
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me : electron mass
ωL : laser frequency
𝝐L,cr: laser/critical field strength

Max. fake rate:
VQE: 0.18 Eigensolver: 0.16 GNN: 0.07 Conventional: 0.03



Next Steps.
● Transmit full ErrorFlow covariance matrix to FitObjects
● Implement correlations between FitObjects, e.g. to

model jet clustering errors

Additional FitObject with pz as 
pseudo-measured parameter:
• “Measured” value = pz balance
• “Error”: 𝜎 of ISR spectrum 

transformed into a Gaussian

Including ISR & Co.

In ee → ZH → 𝜇𝜇bb at 250 GeV

Quality of fitted photon pz
in WW->4j @ 500 GeV

Impact on Higgs reconstruction.

Software Implementation.

Kinematic Fitting 
at Future e+e- Higgs Factories
Benno List1,2, Jenny List1,2
1Deutsches Elektron-Synchrotron DESY 2Currently at CERN

FitObject. Encapsulates all details of the parametrization, calculates its 
own contributions to global 𝜒2 and its derivatives, calculates derivatives of 4-
vector components wrt parameters.

● Optimisation of step length choice in NewtonFitter
● Fundamentally new minimizer, e.g. ML-based?
● Application to multi-jet analyses, 

e.g. ee → ZH, WW, tt, ZHH, …

contact: 
jenny.list@desy.de

Learn more:
• M. Beckmann, B. List, J. List, Nucl.Instrum.Meth.A 624 (2010) 184-191, https://doi.org/10.1016/j.nima.2010.08.107
• B. List, J. List, LC-TOOL-2009-001, https://bib-pubdb1.desy.de/record/88030
• B. List, Constrained Fits, in Data Analysis in High Energy Physics: A Practical Guide to Statistical Methods, Wiley-

VCH, ISBN 978-3527410583

MarlinKinfit. https://github.com/iLCSoft/MarlinKinfit
Example processors. https://github.com/iLCSoft/MarlinKinfitProcessors
Tutorial. https://github.com/ILDAnaSoft/MarlinKinfitTutorial

Constraint. Calculates its value from 4-vectors of FitObjects and its 
derivatives wrt the 4-vector components of the FitObjects.

Fitter. Sets up and solves the 
system of equations, administers list of 
FitObjects and Constraints.
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Sketch of the Fit Procedure

● Fitter has a list of FitObjects;
each FitObject knows its own nuber of parameters and whether they are
measured
=> Fitter assigns global parameter numbers to all parameters of FitObjects

● Fitter has a list of ConstraintObjects
=> assigns global numbers to them

● Fitter builds up system of equations:

– resets vector and matrix to 0

– asks FitObjects to add their parts

– asks ConstraintObjects to add their parts

● Fitter solves system of equations and
updates parameters of FitObjects

● Fitter checks for convergence (Parameter changes small, constraints fulfilled),
iterates if necessary

From FitObjects

From ConstraintObjects
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𝜎(Ejet) = 30% √E

Kinematically Constrained Fitting.
Lot of knowledge in e+e- events beyond the raw measurements:
• known four-momentum of the initial state, e.g. Σpy = 0                     → hard constraint
• masses of intermediate particles, e.g.  M(jj) = MH or MZ → hard or soft constraint
• know which quantities are very well measured and which less so     → error parametrisation
=> formulate hypothesis under which to interpret the event 
=> test hypothesis by minimizing χ2 underconstraints by adjusting particle momenta

Exploit this to
• improve precision on observables, e.g. invariant masses
• determine unmeasured quantities (e.g. neutrino momentum) 
• find best jet pairing 
• select / reject events which match / don’t hypothesis 
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How the OPALFitter works

χ2 contours

Starting point

η1

η2

Constrait 

contours

Solution

0

The constraint line must be parallel

to the χ2 contours at the solution

The solution must lie on the 

0-contour of the constraint 

The OPALFitter approximates

the constraint by a tangential plane

One OPALFitter
iteration step
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OPALFitter vs. NewtonFitter

One OPALFitter
iteration step

One NewtonFitter
iteration step

OPALFitter:
Approximates constraint
by tangential plane

NewtonFitter:
Approximates constraint
by tangential paraboloid

For simplicity, we arrange these values and constrains functions in vectors η⃗, y⃗,
ξ⃗, and f⃗ .

We introduce K additional unknowns λk, the Lagrange multipliers, that
form a vector λ⃗.

The total χ2
T that should be minimized is given by

χ2
T (η⃗, ξ⃗, λ⃗) = (y⃗ − η⃗)T · V −1 · (y⃗ − η⃗) + 2λ⃗T · f⃗ (η⃗, ξ⃗). (2)

Taking the various derivatives leads to the set of equations

∇ηχ2
T = −2V −1 · (y⃗ − η⃗) + 2F⃗ T

η · λ⃗ = 0⃗, (N equations)
∇ξχ2

T = F⃗ T
ξ · λ⃗ = 0⃗, (J equations)

∇λχ2
T = 2f⃗ (η⃗, ξ⃗) = 0⃗, (K equations)

(3)

where Fη and Fξ are matrices of dimension K × N and K × J , respectively,
defined as

(Fη)kn =
∂fk

∂ηn
, (4)

(Fξ)kj =
∂fk

∂ξj
. (5)

(6)

Therefore, the equations to be solved are (after dropping the factors of 2):

0⃗ = V −1 · (η⃗ − y⃗) + F⃗ T
η · λ⃗, (7)

0⃗ = F⃗ T
ξ · λ⃗, (8)

0⃗ = f⃗ (η⃗, ξ⃗). (9)

Since the constraints f⃗ (η⃗, ξ⃗) and their derivatives Fη and Fξ are in general
nonlinear functions, this system of equations has to be solved iteratively.

Let η⃗ν and ξ⃗ν denote the values at iteration ν. Then we can make a Taylor
expansion around this point, and write (neglecting terms of 2nd and higher
order)

f⃗ (η⃗ν+1, ξ⃗ν+1) = f (η⃗ν , ξ⃗ν) + F ν
η · (η⃗ν+1 − η⃗ν) + F ν

ξ · (ξ⃗ν+1 − ξ⃗ν). (10)

Now Eqs. (7) to (9) read

0⃗ = V −1 · (η⃗ν+1 − y⃗) + (F ν
η )T · λ⃗ν+1, (11)

0⃗ = (F ν
ξ )T · λ⃗ν+1, (12)

0⃗ = f⃗ ν + F ν
η · (η⃗ν+1 − η⃗ν) + F ν

ξ · (ξ⃗ν+1 − ξ⃗ν). (13)

This system of equations is now solved.

One can solve Eq. (11) for η⃗ν+1:

η⃗ν+1 = y⃗ − V · (F ν
η )T · λ⃗ν+1 (14)
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Method of Lagrange Multipliers

c.f. talk by 
Yasser Radkhorrami

Inclusion of ISR 
removes bias
while still improving 
resolution.
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