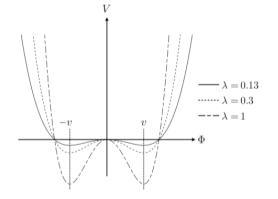
Higgs self-coupling projections for future e+e- colliders.

Jenny List, Julie Munch Torndal ECFA Workshop 2022 October 5-7, 2022

HELMHOLTZ

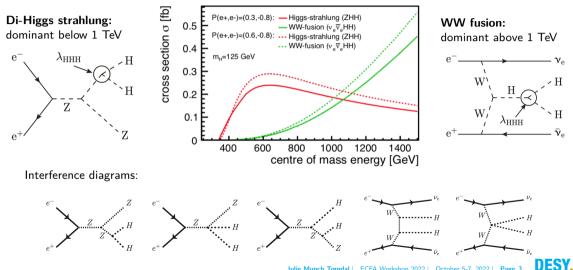
The Higgs self-coupling

• Establish Higgs mechanism experimentally \rightarrow reconstruct Higgs potential


Higgs potential in SM after SSB

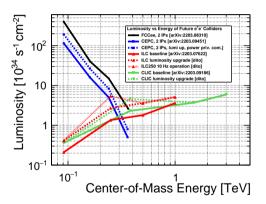
$$V(h) = \frac{1}{2}m_{H}^{2}h^{2} + \lambda_{3}\nu h^{3} + \frac{1}{4}\lambda_{4}h^{4}$$

with $\lambda_3^{SM} = \lambda_4^{SM} = \frac{m_H^2}{2u^2}$


• Measure $\lambda \rightarrow$ determine shape of **Higgs potential**

SM: self-couplings determined by m_{H} , ν EXP: need measurements to confirm/refute this BSM: deviations in $\lambda \rightarrow$ new physics in Higgs sector

 Direct access to trilinear Higgs self-coupling through the measurement of double Higgs production DESY


Accessing the Higgs self-coupling directly at e^+e^- colliders

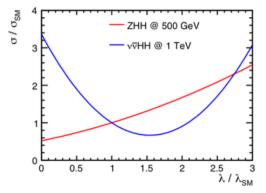
Linear vs circular colliders

Proposed future e^+e^- collider				
circular	linear			
FCC-ee	ILC			
CEPC	CLIC			

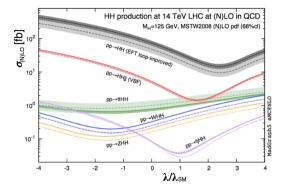
Precision requires luminosity

Precision reach in direct measurements at future colliders

Expected precision from HH production channels (1σ bounds)


collider	excl. from HH	End of data taking	
HL-LHC	50 %	primo 2040s)
ILC 500	27 %	ultimo 2050s	
ILC 500+1000	10 %	primo 2070s	
CLIC 1500	36 %	medio 2060s	Ì
CLIC 1500+3000	[-7 %, 11 %]	medio 2070s	
$FCC\operatorname{-hh}^1$	[3.4 %-7.8 %]	2090s	J

- high-energy colliders (ILC $_{500+1000}$, CLIC $_{1500+3000}$, FCC-hh) can reach the <10% precision level
- Higgs self-coupling can also be measured indirectly in EFT fit
 - e.g. projected precision at FCC-ee is 27 %

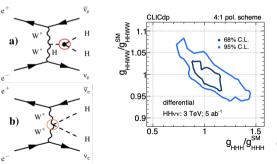

¹DELPHES based analysis

Precision as a function of new physics

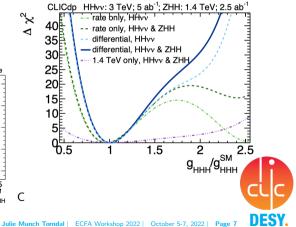
The two channels provide complementary information

- ZHH gives stronger constraints on $\lambda/\lambda_{SM} > 1$
- $\nu \bar{\nu} HH$ gives stronger constraints on $\lambda/\lambda_{SM} < 1$

• LHC gives stronger constraints on $\lambda/\lambda_{SM} < 1$


Projections for Higgs self-coupling measurement at CLIC

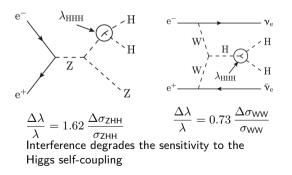
Double Higgs production at CLIC:


Access to both ZHH and HH $\nu\nu$ at $\sqrt{s}=1500~{\rm GeV}$ and $\sqrt{s}=3000~{\rm GeV}$

Observables: σ_{ZHH} , $\sigma_{HH\nu\nu}$, and M(HH) distribution with $HH \rightarrow bbbb + HH \rightarrow bbWW$

HHH vs. HHWW vertex

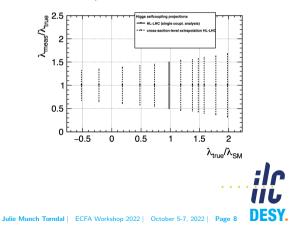
After full CLIC running scenario $\rightarrow \Delta \lambda_{SM} / \lambda_{SM} = [-7\%, 11\%]$


arXiv:1901.05897

Projections for Higgs self-coupling measurement at ILC

Double Higgs production at ILC:

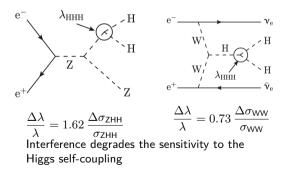
Access to both ZHH at $\sqrt{s}=500~{\rm GeV}$ and $HH\nu\nu$ at $\sqrt{s}=1000~{\rm GeV}$


Observables: σ_{ZHH} and $\sigma_{HH\nu\nu}$ with $HH \rightarrow bbbb + HH \rightarrow bbWW$

After full ILC running scenario

$$\begin{array}{l} \rightarrow \Delta \sigma_{\text{ZHH}} / \sigma_{\text{ZHH}} = 16.8\% \text{ for } \textit{ZHH} \text{ only} \\ \rightarrow \Delta \lambda_{\text{SM}} / \lambda_{\text{SM}} = 26.6\% \text{ for } \textit{ZHH} \text{ only} \\ \rightarrow \Delta \lambda_{\text{SM}} / \lambda_{\text{SM}} = 10\% \text{ for } \textit{ZHH} \& \textit{HH}\nu\nu \end{array}$$

DESY-THESIS-2016-027

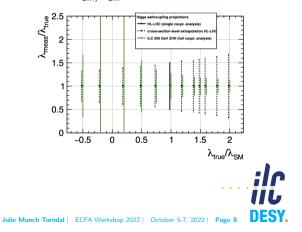


Projections for Higgs self-coupling measurement at ILC

Double Higgs production at ILC:

Access to both ZHH at $\sqrt{s}=500~{\rm GeV}$ and $HH\nu\nu$ at $\sqrt{s}=1000~{\rm GeV}$

Observables: σ_{ZHH} and $\sigma_{HH\nu\nu}$ with $HH \rightarrow bbbb + HH \rightarrow bbWW$

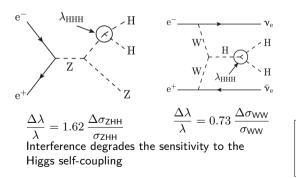

After full ILC running scenario

$$\rightarrow \Delta \sigma_{\text{ZHH}} / \sigma_{\text{ZHH}} = 16.8\% \text{ for } ZHH \text{ only}$$

$$\rightarrow \Delta \lambda_{\text{SM}} / \lambda_{\text{SM}} = 26.6\% \text{ for } ZHH \text{ only}$$

$$\rightarrow \Delta \lambda_{\text{SM}} / \lambda_{\text{SM}} = 10\% \text{ for } ZHH \& HH\mu\mu$$

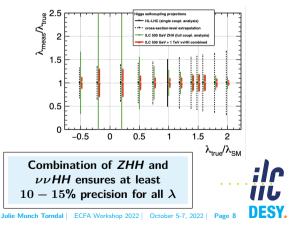
DESY-THESIS-2016-027



Projections for Higgs self-coupling measurement at ILC

Double Higgs production at ILC: Access to both ZHH at $\sqrt{s}=500~{\rm GeV}$ and

HH
u
u at $\sqrt{s} = 1000$ GeV


Observables: σ_{ZHH} and $\sigma_{HH\nu\nu}$ with $HH \rightarrow bbbb + HH \rightarrow bbWW$

After full ILC running scenario

$$\begin{array}{l} \rightarrow \ \Delta \sigma_{\rm ZHH} / \sigma_{\rm ZHH} = 16.8\% \ {\rm for} \ {\it ZHH} \ {\rm only} \\ \rightarrow \ \ \Delta \lambda_{\rm SM} / \lambda_{\rm SM} = 26.6\% \ {\rm for} \ {\it ZHH} \ {\rm only} \\ \rightarrow \ \ \Delta \lambda_{\rm SM} / \lambda_{\rm SM} = 10\% \ {\rm for} \ {\it ZHH} \ \& \ {\it HH} \nu \nu \end{array}$$

DESY-THESIS-2016-027

Strategy for improving the Higgs self-coupling measurement at ILC

DESY-THESIS-2016-027

State-of-the-art projections at ILC performed 6-9 years ago Meanwhile \rightarrow significant improvements in our analysis tools

Jet clustering

 $\begin{array}{l} \mbox{Perfect jet clustering} \\ \rightarrow \sim 40 \mbox{\% relative} \\ \mbox{improvement in } \Delta \sigma_{\rm ZHH} / \sigma_{\rm ZHH} \\ \mbox{Flavour tagging} \end{array}$

Better b-tagging efficiency

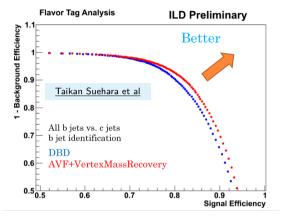
5% relative improvement in $\varepsilon_{b\text{-tag}}$ $\rightarrow 11\%$ relative improvement in $\Delta\sigma_{\rm ZHH}/\sigma_{\rm ZHH}$ Isolated lepton tagging

$$\stackrel{\bullet\bullet\bullet}{=}$$
 Optimised for $\ell = \{e, \mu\}$

For $\varepsilon_{\tau} \sim \varepsilon_{e,\mu}$ $\rightarrow 8\%$ relative improvement in $\Delta \sigma_{\rm ZHH} / \sigma_{\rm ZHH}$

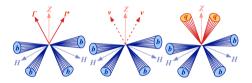
Error parametrisation in kinematic fitting

Mass resolution \propto jet energy resolution


Errorflow: Energy resolution parametrisation for individual jets

Overlay removal

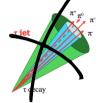
 $\begin{array}{l} \gamma\gamma\rightarrow {\rm low-} p_{T} \ {\rm hadrons} \\ {\rm Expect} \ \langle \textit{N}_{\it overlay}\rangle=1.2 \ {\rm event} \ @ 500 \ {\rm GeV} \\ {\rm Not} \ {\rm included} \ {\rm previously} \end{array}$


Better modelling of the γγ overlay
Advanced overlay removal strategy

Flavour tagging

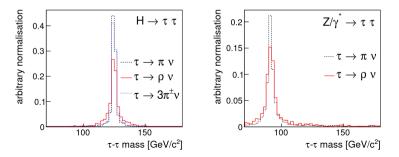
Example @ 80% signal efficiency:

	DBD	new	ATLAS
1-eff(c)	90%	95%	75%
Rejection factor	10	20	4

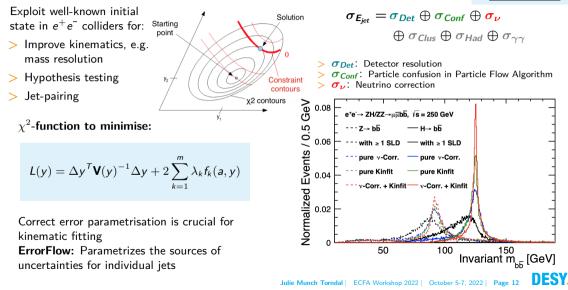

Better signal efficiencies in preselections

- ννHH: 74 % relative improvement after b-tag cut
- *qqHH*: 70 % relative improvement after b-tag cut

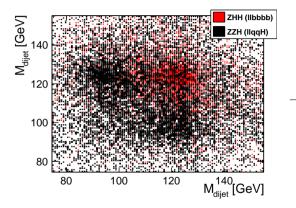
Julie Munch Torndal | ECFA Workshop 2022 | October 5-7, 2022 | Page 10


Tau lepton reconstruction

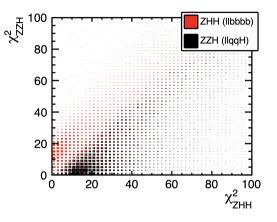
Reconstruction using impact parameters


- > requires accurate au vertex + precise measurement of decay products
- > parametrisation only for single neutrino production

 $>~e^+e^- \rightarrow \mu^+\mu^-\tau^+\tau^-$ simulated in ILD

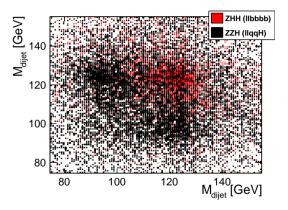

arXiv:1507.01700

Kinematic fitting & ErrorFlow

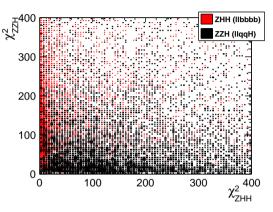


arXiv:2110.13731

Kinematic fitting for hypothesis testing



• Pre-fitted dijet-masses show large overlap between signal (*ZHH*) and background (*ZZH*)

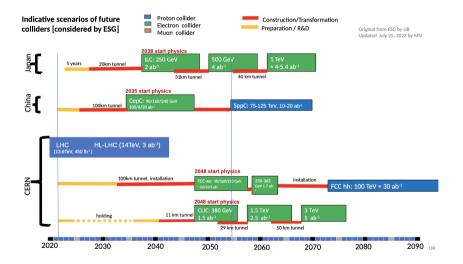


• Hypothesis testing showed good separation for low χ^2 -values of signal (*ZHH*) and background (*ZZH*) in previous analysis <u>DESY-THESIS-2016-027</u> Julie Munch Torndal | ECFA Workshop 2022 | October 5-7, 2022 | Page 13 **DESY**.

Kinematic fitting for hypothesis testing

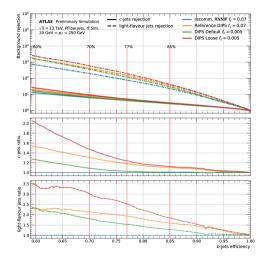
• Pre-fitted dijet-masses show large overlap between signal (*ZHH*) and background (*ZZH*)

• With ErrorFlow \rightarrow larger separation of signal (*ZHH*) and background (*ZZH*)


Future high-energy e^+e^- colliders can directly access the Higgs self-coupling through HH production. ILC and CLIC both hold the opportunity to reach the < 10% precision level.

Next steps: Continue work of propagating improvements in reconstruction tools to ZHH analysis @ ILC

• Update state-of-the-art projections — important for shaping the landscape of future colliders


Backup

"Updated" timelines

Julie Munch Torndal | ECFA Workshop 2022 | October 5-7, 2022 | Page 16 DESY.

Flavor Tagging at ATLAS

