

Quantum GAN for HEP Detector Simulations

GRID 2021 slides for NiQ 2022

Florian Rehm [CERN openlab, RWTH Aachen]

Sofia Vallecorsa [CERN openlab], Kerstin Borras [DESY, RWTH Aachen], Dirk Krücker [DESY], Simon Schnake [DESY]

03.03.2022

Future Simulations

Alternative to Calorimeter Monte Carlo Simulations

Previously: Deep Learning

- → Developed a Deep Learning (DL) approach for calorimeter simulations which requires fewer computing resources compared to Geant4
 - DL GAN (up to 160000x speed up)

Now: Explore potential of quantum computing

- Hope to solve problems faster and / or more accurately
- "Quantum Advantage" not yet reached \rightarrow only initial investigations
 - Using simplified models
 - Understanding advantages and challenges

Calorimeter Training Data

Geant4

- 3D particle shower images
- Average the image over z-axis \rightarrow 1D image

25 Pixel

15

20

position along z-axis

25

Florian Rehm - NiQ 2022

- Down sample to only 8 pixel
- Average of all input energies

0.08

0.07

0.06

0.03 0.02

0.01

5

10

6 0.05 0.04

deposition

cern i:, cern

Hybrid qGAN

Quantum Generative Adversarial Networks

Hybrid quantum – classical ansatz for generating calorimeter shower images

1D Quantum GAN

1D Quantum Generator Circuit

- Modified a Qiskit qGAN model developed by IBM
- 1D 8-pixel images
 - Amplitude encoding: 3 qubits $(2^3 = 8 \text{ states})$ in quantum generator circuit

Hadarmard Gate -H - $= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

Y-Rotational Gate

Controlled-Z Gate $= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

1D Training without Noise

- Simulating the quantum computer on a classical computer
- Hyperparameter search reduced training time and increased accuracy

→ Good results

1D Training with Noise

- Custom Noise Model:
 - 2.5% readout noise
 - 1.5% gate-level noise

- → Good accuracy
- → Training could have stopped earlier
- \rightarrow Repeated with real hardware noise \rightarrow same results

1D Inference on Real Hardware

Run inference on IBMQ Manila Quantum Computer

• Different noise level than in training

Qubit Number	0	-]	2	Average
Readout Error	2.34%	2.6	6%	2.05%	2.35%
CX-gate Error	1.11%		1.75%		1.43%

2D Quantum GAN

Florian Rehm - NiQ 2022

11

2D qGAN

2D Data Representation

2D: 8x8 pixel images

- 1. Down sample
- 2. 1D stacking
- 3. Apply logarithm

2D Quantum Generator Circuit

Tree Tensor Network Architecture

64 pixels = $2^6 \rightarrow 6$ qubits for amplitude encoding

Grant, E., Benedetti, M., Cao, S. *et al.* Hierarchical quantum classifiers. *npj Quantum Inf* **4**, 65 (2018). https://doi.org/10.1038/s41534-018-0116-9

Florian Rehm - NiQ 2022

Best Training Results

• Run on quantum simulator without noise

qGAN Future Work

- More tests with the full noise model
 - Does the training benefit from the noise?
 - Test error mitigation techniques
- Conditional qGAN
 - Recent qGAN model learns only averaged distribution
- Run training on real quantum hardware
 - qGAN training to expensive
- 2D qGAN convergence is rare + training takes ~5 days on simulator

→ Search alternative quantum generative model

Thank you for Listening

Quantum GAN for HEP Detectors Simulations

Florian Rehm [CERN openlab, RWTH Aachen]

Sofia Vallecorsa [CERN openlab], Kerstin Borras [DESY, RWTH Aachen], Dirk Krücker [DESY], Simon Schnake [DESY]

