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In wet-lab experiments, the slime mold Physarum polycephalum has demonstrated its 
ability to tackle a variety of computing tasks, among them the computation of shortest 
paths and the design of efficient networks. For the shortest path problem, a mathematical 
model for the evolution of the slime is available and it has been shown in computer 
experiments and through mathematical analysis that the dynamics solves the shortest 
path problem. In this paper, we generalize the dynamics to the network design problem. 
We formulate network design as the problem of constructing a network that efficiently 
supports a multi-commodity flow problem. We investigate the dynamics in computer 
simulations and analytically. The simulations show that the dynamics is able to construct 
efficient and elegant networks. In the theoretical part we show that the dynamics 
minimizes an objective combining the cost of the network and the cost of routing the 
demands through the network. We also give alternative characterizations of the optimum 
solution.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Physarum polycephalum is a slime mold in the Mycetozoa group [11]. Its cells can grow to considerable size and it 
can form networks. In wet-lab experiments, the slime mold Physarum polycephalum was applied to a diverse variety of 
computing problems: computation of shortest paths in a network [36], computation of minimum risk paths [35], design of 
efficient networks [42,4,45,9], computation of Voronoi and Delaunay diagrams [5,37], computing circuits and electronics [24]
and many more. We refer the reader to [7,6] for a survey of the many problems that can be attacked using live Physarum 
polycephalum and for which the slime is able to find good or even optimal solutions to instances of limited size. Fig. 1
illustrates the shortest path and the network formation experiments in [36,42].
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Fig. 1. The figure on the left shows the shortest path experiment. It is reprinted from [36]. The edges of a graph were uniformly covered with Physarum 
(subfigure (a)) and food in the form of oat-meal was provided at the locations labeled AG in subfigure (b). After a while the slime retracted to the shortest 
path connecting the two food source (subfigure (c)). The underlying graph is shown in (d). The figure on the right shows the network design experiment. 
It is reprinted from [42]. Food was provided at many places (the larger dots in the picture) and the slime was constrained to live in an area that looks 
similar to the greater Tokyo region. The large dot in the center corresponds to Tokyo and the empty region below it corresponds to Tokyo bay. The slime 
formed a network connecting the food sources. The two graphs on the right compare the network built by the slime (label C) with the railroad network in 
the Tokyo region (label D).

There is also considerable work aimed at understanding the inner workings of Physarum polycephalum, for example, 
how global synchronization can result from random peristaltics [1], how information can be transported and a memory can 
exist in an organism without a nervous system [2,25], and whether tubes of the mold can transfer electricity [43].

It is important to stress that the plasmodium of Physarum polycephalum is not an automaton.1 The papers [30,32] clearly 
demonstrate the limits of slime-mold computations even for the shortest path problem and [6,30] argue convincingly that 
conventional computing terminology should be applied with great care when discussing biological systems. After all, the 
solutions constructed in wet-lab experiments strongly depend on the initial conditions, e.g., how much food is provided 
and how the plasmodium is distributed initially, the solutions are not strictly optimal but only approximately optimal, the 
outcomes of the experiments are not deterministic and hence hard to reproduce, and the maze in Fig. 1 has fairly narrow 
edges and hence guides the slime towards building nearly straight connections. The papers [38,22] discuss more generally 
the question what it means for a biological or physical device to compute. According to their definition, to which we 
subscribe, Physarum polycephalum does not compute. A comprehensive survey of analog computing models is given in [15]
and [33,34] discuss the differences and commonalities of biology and computing.

The experimental work mentioned above instigated the development of Physarum-inspired algorithms mimicking (parts 
of) the behavior of the slime mold. This is akin to algorithms mimicking ant colonies [17], neural networks [8], simulated 
annealing [26], and other bio-inspired computing paradigms. Physarum-inspired algorithms have been used to solve a vari-
ety of computational tasks, for example, the design of transportation networks [42,45,46] and supply-chain networks [47]. 
For the shortest path problem, a mathematical model in the form of a coupled system of differential equations was given 
for the evolution of the slime, the biological relevance of the model was argued, and the model was shown to solve short-
est path problems in computer simulations [41]. Mathematical proofs that the model solves (it is explained below what is 
meant by solves) shortest path problems can be found in [31,12]. The Physarum dynamics is also able to solve more general 
linear programs [39,40,23,27]. It is important to emphasize that the Physarum dynamics is inspired by the behavior of the 
mold, it captures – at best – parts of the behavior of the mold.

The paper [41] is the starting point for this work. Tero et al. model the slime network as an electrical network G = (V , E)

with time varying resistors. Each edge e of the network has a fixed positive length ce and a time-varying diameter xe(t). In 
this paper, we will refer to ce as the cost of the edge and to xe as the capacity of the edge. The resistance of e at time t is 
then re(t) = ce/xe(t). Let s0 and s1 be two fixed vertices in the network; they represent the two food sources. One unit of 
electrical current is sent from s0 to s1. Let qe(t) be the current flowing across e. Then the capacity of e evolves according 
to the differential equation

ẋe = d

dt
xe(t) = |qe| − xe for all e ∈ E, (1)

1 There is a small community of researchers that think differently, see [21] for example.
2
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i.e., the diameter of an edge grows (shrinks, stays unchanged) if the flow is larger than (smaller than, equal to) the current 
diameter. The equations for the different edges are coupled because the flow through an edge e depends on the resistance 
of all other edges. As is customary, we write ẋ for the derivative with respect to time and drop the time-argument of x and 
q. Tero et al. showed in computer simulations that a discretization of the model converges to the shortest path connecting 
the source and the sink in the following sense: xe(∞) = 1 for the edges on the shortest path and xe(∞) = 0 for the other 
edges. This assumes that the shortest path is unique. Bonifaci et al. [12] proved that the dynamics converges to the shortest 
source-sink path, i.e., that the Physarum dynamics (1) solves the shortest path problem. A related dynamics

ẋe = |qe|μ − xe for all e ∈ E,

where μ is a constant larger than one, may converge to a path different from the shortest path depending on the initial 
conditions [32].

In this paper, we generalize the model of Tero et al. [41] to network design. We introduce a simple model, again in the 
form of a system of differential equations,

• that for the case of the shortest path problem agrees with the model proposed in Tero et al.,
• that in computer simulations qualitatively reconstructs the behavior observed in the wet-lab network design experi-

ments [36,42], and
• that is amenable to theoretical analysis.

We do not argue biological plausibility and we do not claim any biological relevance. We also do not try to describe a general 
model of the Physarum that fits all experimental setups; less ambitiously, we focus on the network design experiments. This 
is a paper in algorithm design and analysis.

The shortest path problem can be viewed as a network design problem. Given two vertices in a graph, the goal is to 
construct the cheapest network connecting the given vertices. The solution is the shortest path connecting the vertices. The 
shortest path problem can also be viewed as a minimum cost flow problem. We want to send one unit of flow between the 
given vertices and the cost of sending a certain amount across an edge is equal to the cost of the edge times the amount 
sent. The solution is the shortest path connecting the given vertices.

Networks are designed for a particular purpose. For this paper, the purpose is multi-commodity flow. Suppose that we 
have many pairs of vertices between which we want to send flow. We want to construct a network that satisfies the many 
demands in an economical way. Economical could mean many things: minimum cost of the network (that’s the Steiner tree 
problem), shortest realization of each demand (then the network is the union of the shortest paths), or something in the 
middle, i.e., some combination of the total cost of the network and the cost of routing the demands in the network. We 
assume economies of scale, i.e., that there is some benefit in sharing a connection, i.e., the cost of sending one unit each of 
two commodities across an edge is lower than two times the cost of sending one unit of one commodity across the edge. In 
Section 5, we give examples of how sharing is encouraged by our model. The principles of our model are simple. As in Tero 
et al. each edge has a cost and a capacity. We have demands between pairs of vertices; this could be passengers entering 
the network at some station and leaving the network at some other station. The demand i between vertices s(1)

i and s(2)
i

leads to an electrical flow qi . For each edge e, we aggregate the individual flows qi(e) to an overall flow q(e). This flow is 
then used in equation (1). For the aggregation we use either the one-norm or the two-norm of the vector (q1(e), q2(e), . . .)
and find that the two-norm aggregation is to be preferred. We mention that one-norm aggregation is used in [45].

This paper is organized as follows. In Section 2 we introduce our model and in Section 3 we review our results. In 
Section 4 we discuss related work. In Section 5, we report about paper-and-pencil and computer experiments. The analytical 
part starts with Section 6. We review basic facts about electrical flows. In subsequent sections, we prove the existence of 
a solution defined for t ∈ [0, ∞), characterize the fixed points, introduce a Lyapunov function L for the dynamics, derive 
further properties of the Lyapunov minimum, show convergence to the Lyapunov minimum, and finally make a connection 
to mirror descent. Section 13 offers conclusions.

2. The model

Before presenting our model we want to fix some notations. Given a matrix M ∈ Rn×m , we will denote with Mi , M j , 
and Mi, j its ith-row, its jth-column, and its entry i, j, respectively. Moreover, we denote with Tr(M) = ∑n

i=1 Mi,i the trace 
of a square matrix M ∈Rn,n .

Our model for the multi-commodity network design problem is inspired by the Physarum model for the shortest path 
problem and its generalization to linear programming. Let A ∈Rn×m be an arbitrary real matrix and let b1 to bk in Rn be 
k right-hand sides such that each of the linear systems A f = bi is solvable.

The reader may want to think of A as the node-arc incidence matrix of a connected undirected graph G with n nodes 
and m edges, i.e., for each e = (u, v) ∈ E , the column (AT )e has an entry +1 in position u and entry −1 in position v; the 
orientation of the edge is arbitrary, but fixed. We have k different source-sink pairs (s(1)

i , s(2)
i ), 1 ≤ i ≤ k. Let bi ∈ Rn be the 

vector with entry +1 in position s(1)
i and entry −1 in position s(2)

i . All other entries of bi are zero. Since G is assumed to be 
connected, the linear system A f = bi admits solutions for all i. We refer to this setting as the multi-commodity flow setting.
3



JID:TCS AID:13259 /FLA Doctopic: Theory of natural computing [m3G; v1.313] P.4 (1-20)

V. Bonifaci, E. Facca, F. Folz et al. Theoretical Computer Science ••• (••••) •••–•••
Now, for any non-negative vectors x ∈Rm and c ∈Rm , we define the following matrices

X = diag(x) C = diag(c) L(x) = A XC−1 AT . (2)

Given a solution f of A f = bi , we use

Ex( f ) =
{∑

e ce/xe f 2
e if supp f ⊆ supp x,

∞ if supp f � supp x,

to denote the energy of f with respect to x. Let qi(x) ∈Rm , or simply qi , be the minimum energy solution i.e.,

qi = argmin
f ∈Rm

{
Ex( f ) : A f = bi

}
. (3)

The optimal solution of the optimization problem (3) (see Section 6 for details) is given by

qi(x) = XC−1 AT pi(x), i = 1, . . . ,k, (4)

where pi(x), or simply pi , is defined as any solution to

L(x)pi = bi, i = 1, . . . ,k.

In the multi-commodity flow setting, the minimal energy solution qi is simply the electrical flow realizing the demand bi

and pi are the corresponding node potentials. The node potentials are not unique; they can be made unique by defining a 
particular node as ground, i.e., giving it potential zero. The electrical flow is induced by the potential drops AT pi multiplied 
by the conductivity XC−1. If we now define the matrix B ∈Rn,k by

B =
(

B1, . . . , Bk
)

:=
(

b1, . . . ,bk
)

,

we can express the potentials, the potential drops per unit cost, and the fluxes corresponding to the different commodities 
in the following matrix form

P =
(

P 1, . . . , Pk
)

:=
(

p1, . . . , pk
)

with L(x)P = B

� =
(
�1, . . . ,�k

)
:=

(
λ1, . . . , λk

)
= C−1 AT P

Q =
(

Q 1, . . . , Q k
)

:=
(

q1, . . . ,qk
)

= X�.

(5)

Note that we use P i and pi interchangeably and similarly for � and Q .
We are now ready to define our model. We let the vector Q e of values Q e,i for any edge e determine the capacity of an 

edge and study different ways of combining the individual solutions, in particular, one-norm and two-norm.2 This leads to 
the following dynamics:

ẋe = −xe +
∑

i

|Q e,i | = xe

(
−1 +

∑
i

|Q e,i |
xe

)
= xe

(
−1 +

∑
i

|�e,i |
)

= xe(||�e||1 − 1), (6)

ẋe = −xe +
√∑

i

Q 2
e,i = xe

⎛
⎝

√∑
i

(
Q e,i

xe

)2

− 1

⎞
⎠ = xe

(√∑
i
�2

e,i − 1

)
= xe(||�e||2 − 1). (7)

In (6), we form the one-norm ||�e||1 of the different normalized potential drops across any edge e, and in (7), we form the 
two-norm | |�e| |2. For k = 1, the one-norm and the two-norm dynamics coincide. The results of this paper suggest that the 
two-norm dynamics is the appropriate generalization to larger k.

The following generalized Physarum dynamics introduced in [13] subsumes the two-norm dynamics as a special case. For 
each e ∈ E , let ge be a non-negative, increasing and differentiable function with ge(1) = 1:

ẋe = xe (ge (||�e||2) − 1) . (8)

2 In the multi-commodity flow setting, the qi ’s are flows in the network G . The fact that flows from different demand pairs on the same edge do not 
cancel each other (not even partially) seems a bit strange at the microscopic level. After all, physically, only the cytoplasm is being transported. How does 
an edge “distinguish” between the cytoplasm of pair i and the cytoplasm of pair i′? For this reason, we do not claim biological plausibility for our model. 
When k = 1, clearly this was not an issue.
4
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The two-norm dynamics is a special case with ge(z) = 1 + (z − 1). Other examples are ge(z) = 1 + de (z − 1) and ge(z) =
1 +de

(
z2 − 1

)
where de > 0 is the “reactivity” [27] of edge e, ge(z) = zμe for some μe > 0 or ge(z) = (1 +αe)zμe /(1 +αe zμe )

for some μe, αe > 0.
The right hand sides of (6) to (8) are defined for any

x ∈ � =
{

x ∈ Rm≥0 : ∃P ∈Rn,k solving L(x)P = B
}

.

3. Our results

In the analytical part of the paper, we ask and answer the following questions for the generalized Physarum dynamics. 
We have little to say about the one-norm dynamics.

• Do the dynamics have a solution x(t) with t ∈ [0, ∞)?
• Do the dynamics converge?
• What are the fixed points and the limit points of the dynamics?
• What do the dynamics optimize?
• How can we characterize the limit points?

In the experimental part of the paper, we perform computer and pencil-and-paper simulations of the dynamics and address 
the following questions:

• How strong are the sharing effects of the dynamics? How far deviate individual flows from their shortest realization in 
order to benefit from sharing edges with other flows?

• Do the dynamics construct “nice” networks? Does it qualitatively reconstruct the wet-lab experiments in [42]?

Our first result concerns the existence of solutions with domain [0, ∞) for the generalized Physarum dynamics.

Theorem 1. Let x(0) ∈Rm
>0 . The generalized Physarum dynamics has a solution t 
→ x(t) ∈Rm

>0 for t ∈ [0, ∞).

The cost of a capacity vector x is defined as

C(x) = cT x =
∑

e

cexe.

The energy dissipation for a single demand b induced by a capacity vector x is defined as

min
f ; A f =b

Ex( f ) =
∑

e

re/xeq2
e = bT p = pT L(x)p,

where q is the minimum energy solution of A f = b with respect to x and p is the corresponding node potential. We will 
show the second equality in Section 6. The last equality follows from L(x)p = b. The energy dissipation E(x) for a set of k
demands b1, . . . , bk is the sum of the energy dissipations for the individual demands, i.e.,

E(x) =
∑

i

Ex(q
i) =

∑
i

(bi)T pi = Tr(P T L(x)P ),

where pi is the node potential with respect to the minimum energy solution qi to the i-th demand.
The fixed points of a dynamics are the points x with ẋe = 0 for all e. We use F1 and Fg to denote the fixed points (also 

called equilibrium points) of the one-norm and the generalized dynamics.

Lemma 1 (The fixed points of the one-norm dynamics). x ∈F1 iff for all e either xe = 0 or ||�e||1 = 1. The latter condition is equivalent 
to ||Q e||1 = xe as well as to ||(AT )e P ||1 = ce .

The fixed points of the generalized dynamics have a remarkable property. For a fixed point x ∈ Fg , the cost C(x) equals the 
dissipated energy E(x).

Lemma 2 (The fixed points of the generalized Physarum dynamics). x ∈Fg iff for all e either xe = 0 or | |�e| |2 = 1. The latter condition 
can be expressed equivalently by | |(AT )e P | |2 = ce and also by xe = | |Q e| |2 . Further, for every x ∈Fg we have x ≥ 0, A Q = B, and

Tr(BT P ) = E(x) = C(x) = cT x,

i.e., for fixed points of the generalized Physarum dynamics the cost equals the energy dissipation.
5
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The beauty goes further. The dynamics follows a path along which the sum of cost and energy dissipation decreases and, under 
mild additional assumptions, minimizes the sum in the limit of t → ∞. Let

L(x) = 1

2
(C(x) + E(x)) = 1

2
(cT x +

∑
i

(bi)T pi)

be one-half of the sum of the cost and the energy dissipation of the network. We show in Section 9 that the function L is 
a Lyapunov function for the generalized Physarum dynamics, in particular, L(x(t)) is a non-negative decreasing function of t . 
Formally, the conditions for a Lyapunov function are: L(x) ≥ 0 for x ∈ �, d

dt L(x(t)) = 〈∇L, ̇x〉 ≤ 0 for all t . In the case k = 1, 
L is also a Lyapunov function for the one-norm dynamics as shown in [27]. Let

V = { x : 〈∇L, ẋ〉 = 0 }
be the set of points in which the dynamics does not decrease the Lyapunov function any further. It follows from general 
theorems about dynamical systems that the dynamics converges to the set V . We show that V is equal to the set of fixed 
points Fg , and that under mild additional assumptions, the dynamics converges to the minimizer of the Lyapunov function.

Theorem 2. Fg = V and the generalized Physarum dynamics converges to V . Moreover, if the set Fg is finite and any two points in 
Fg have distinct values of L, the dynamics x(t) converges to x∗ = argminx∈Rm≥0

L(x).

The minimum of the Lyapunov function can also be characterized in alternative ways.

Theorem 3. The following quantities MinQ, MaxP, and MinL are equal.

MinQ = min
Q ∈Rm×k

{∑
e

ce||Q e||2 : A Q = B

}
, (9)

MaxP = max
P∈Rn×k

{
Tr(BT P ) : ||(AT )e P ||2 ≤ ce for all e

}
, (10)

MinL = min
x∈Rm≥0

L(x). (11)

Moreover, there are optimizers Q ∗ , R∗ and x∗ such that

x∗
e = ||Q ∗

e ||2 for all e,

L(x∗)P∗ = B,

Q ∗ = X∗C−1 AT P∗.

It is instructive to interpret the theorem for the case k = 1, A the node-arc incidence matrix of a directed 
graph, and b a vector with one entry +1 and one entry −1 and all other entries equal to zero. Then MinQ =
minq∈Rm

{∑
e ce|qe| : Aq = b

}
is the minimum cost of a flow realizing b in the underlying undirected network and 

MaxP = maxp∈Rn
{

bT p : |pv − pu | ≤ ce for all e = (u, v)
}

is the maximum distance between the two nodes designated 
by b for any distance function on the nodes satisfying the cost constraints imposed by c. Both values are equal to the 
cost of the minimum cost path connecting the two designated nodes and hence MinQ = MaxP. The third characteriza-
tion via MinL = minx≥0 L(x) is non-standard. Note that L(x) = (cT x + bT p)/2, where p are node potentials driving a 
current of 1 between the nodes designated by b in the network with edge resistances ce/xe . Then bT p is the potential 
difference between the two designated nodes which, since the driven current is one, is the effective resistance between 
the two designated nodes. In Lemma 10, we will show ∂

∂xe
L(x) = ce

2 (1 − | |�e| |22), i.e., the minimizer x∗ of L(x) must 
satisfy x∗

e �= 0 ⇒ |(AT )e p∗| = ce , where p∗ are node potentials corresponding to x∗ . Note that for an edge e = (u, v), 
|(AT )e p∗| = |p∗

v − p∗
u | is the potential drop on e. Orient all edges such that potential drops are positive and consider 

any path W (W for Weg) in supp(x∗) connecting the two designated nodes. Then

bT p∗ =
∑
e∈W

(AT )e p∗ =
∑
e∈W

ce,

since the potential difference between the two designated nodes is the sum of the potential drops along W . Thus any two 
paths in supp(x∗) connecting the two designated nodes must have the same cost and hence (assuming that any two such 
paths have distinct cost) supp(x∗) contains a single path connecting the two designated nodes. In fact, supp(x∗) is equal to 
such a path. Now 

∑
e∈W cexe +∑

e∈W ce/xe = ∑
e∈W (cexe + ce/xe) is minimized for xe = 1 for all e ∈ W and then is equal to 
6
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twice the cost of W . Of course, the cost of W is minimized for the shortest undirected path connecting the two designated 
nodes.

We turn to the result of our computer experiments. We performed three case studies, two small and the third inspired 
by the wet-lab experiment by [42]. The first example (Section 5.1) can be treated analytically, we consider a ring with three 
nodes with a demand of one between any pair of nodes. We will see that a solution using all three edges is superior to 
a solution using only two edges. Also, we see confirmed that for fixed points of the two-norm dynamics the cost of the 
network and the total energy dissipation is the same. The second example (Section 5.2) concerns flow in the Bow-Tie graph 
shown in Fig. 3. We will investigate the incentive for sharing links. In this example, the demands can share a link at the 
cost of increasing the distance between the terminals. We will see that sharing pays off. The third Example 5.3 is based on 
the example in [42]. We will see that the dynamics forms nice networks similar to the networks in [42].

4. Related work

This paper is inspired by [41], [45], and [42]. We already explained the connection to these papers in detail in the 
previous sections.

Shortly after this work was posted on arXiv, a closely related paper [28] was posted. It considers the multi-commodity 
transportation problem in graphs. Let A be the node-arc incidence matrix of a directed graph and vectors b1 to bk with 
1T bi = 0 for all i be k supply-demand vectors. Each arc of the graph has a fixed cost ce and a capacity xe . This is what 
we called the multi-commodity flow setting in Section 2. They model the interaction between the different commodities in 
exactly the same way as we do, i.e., for each i, a minimum energy solution qi is a minimum energy solution with respect 
to the resistances ce/xe of the system Aq = bi . The different flows on each edge e are combined by forming their two-norm. 
The difference lies in the dynamics. The paper considers the dynamics

ẋe = xβ
e ||�e||22 − xe, (12)

where β ∈ (0, 2) is a parameter. For β = 1, this dynamics is a special case of our generalized dynamics obtained by setting 
ge(z) = 1 + (z2 − 1).

The paper investigates the dynamics analytically and experimentally. For the experimental evaluation, the paper uses the 
Paris metro. In the analytical part, the paper shows that the fixed points satisfy x3−β

e = | |Q e| |22 and that the solution to the 
optimization problem

minimize
∑

e

ce

xe
||Q e||22 subject to

∑
e

cex2−β
e = K and A Q = B,

where K is a positive constant, satisfies x3−β
e = C · | |Q e| |22, where C is a constant, i.e., fixed points and optimal solutions to 

the optimization problem exhibit the same relation between xe and Q e . The paper also contains an extensive discussion of 
the simulation of the dynamics and of the numerical solution of the optimization problem above.

Convergence of the dynamics is not shown. However, a slight modification of the Lyapunov function used in this paper 
also works for their dynamics. Assume β ∈ (0, 2) and define

L(x) = 1

2

(
1

2 − β
cT x2−β +

k∑
i=1

(bi)T pi

)
.

Lemma 3 (Gradient of L). For all e ∈ E,

∂

∂xe
L(x) = ce

2
(x1−β

e − ||�e||22). (13)

Proof. The derivative ∂
∂xe

∑k
i=1(b

i)T pi is computed in Lemma 10 and ∂
∂xe

cT x2−β = (2 − β)cex1−β
e . �

Theorem 4. The function L : � 
→R is a Lyapunov function for the dynamics (12), i.e., d
dtL(x(t)) ≤ 0 for all t. Let

V = { x ∈ � : 〈∇L(x), ẋ〉 = 0 } .

Then V is equal to the fixed points of (12).

Proof. Since d
dt L(x(t)) = 〈∇L(x), ̇x〉, we obtain

d

dt
L(x(t)) =

∑
e

ce

2
(x1−β

e − ||�e||22) · (xβ
e ||�e||22 − xe) = −

∑
e

ce

2
xβ

e (x1−β
e − ||�e||2)2 ≤ 0.

We have equality if and only if for all e either xe = 0 or | |�e| |2 = x1−β
e . Thus x ∈ V if and only if x is a fixed point of (12). �
2

7
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Lemma 4. For fixed points x of (12), 
∑

e cex2−β
e = ∑

i(b
i)T pi .

Proof.∑
i

(bi)T pi =
∑

e

∑
i

ce

xe
q2

ei =
∑

e

∑
i

ce

xe
(xe�ei)

2 =
∑

e

cexe||�e||22 =
∑

e

cex2−β
e . �

We mentioned in the result section that our generalized Physarum dynamics converges to a solution for which the cost ∑
e cexe is equal to the dissipated energy 

∑
i(b

i)T pi . The dynamics (12) allows a wider choice of equilibrium points.

5. Case studies

5.1. Multi-commodity flow in a ring

Consider a graph consisting of three vertices a, b, and c and three edges connecting them into a 3-cycle. All edges have 
cost one and we have a demand of one between any pair of nodes. An equilibrium uses either two edges or three edges.

5.1.1. Two edge solution
We will see below that, for each of the dynamics, the solution is symmetric, i.e., both edges have the same capacity in 

equilibrium, say z. The flow across both edges is two. For each demand, the potential drop on each edge is 1/z. So the total 
energy spent is E = 2/z + 2 · 1/z = 4/z (one demand uses two edges for a energy dissipation of 2/z and two demands use 
one edge for a energy dissipation of 1/z each) and the total cost C = 2z. Thus C + E = 4/z + 2z.

One-norm dynamics: The current across each edge is 2 and hence z = 2 for each of the existing edges. Thus C = cT z = 4, 
E = ∑

i(b
i)T pi = 4/z = 2, and C + E = 6.

Two-norm dynamics The current across each edge is 1 + 1 and hence z = √
2. Thus C = cT z = 2

√
2, E = ∑

i(b
i)T pi =

4/
√

2 = 2
√

2 and C + E = 4
√

2. Note that C = 2
√

2 = E . This is not a coincidence as we show in Lemma 9.

Optimum: We have C + E = 4/z + 2z. The optimum is attained for z = √
2. Note that this corresponds to the equilibrium of 

the two-norm. This is not a coincidence as we show in Theorem 5.

5.1.2. Three edge solution
We will see below that, for each of the dynamics, the solution is symmetric, i.e., all edges have the same capacity in 

equilibrium, say z, and hence the same resistance 1/z. Then C = 3z. Each demand is routed partly the short way and partly 
the long way. Since the long way has twice the resistance, the amount routed the short way is twice the amount routed 
the long way, i.e., 2/3 of each demand is routed the short way and 1/3 is routed the long way.

For each demand, let � be the potential drop between source and sink. The total energy spent is 3�. The potential 
drop � must be such that it can drive a current of 2/3 across a wire of conductance z. Thus � = 2/(3z). We obtain 
C + E = 3z + 2/z.

One-norm dynamics: z is equal to the total current flowing across an edge and hence z = 2/3 + 2 · 1/3 = 4/3 and � = 1/2. 
So C = cT z = 4, E = ∑

i(b
i)T pi = 3/2, and C + E = 11/2. This is better than for the two-edge equilibrium.

Two-norm dynamics For each edge, we have one flow of value 2/3 and two flows of value 1/3 and hence z2 = 4/9 + 2 ·
1/9 = 6/9. Thus z = √

2/3. � must be such that it can drive a current of 2/3 across a wire of conductance 
√

2/3 and hence 
� = √

2/3.
Hence C = cT z = 3 · √

2/3 = √
6 and E = ∑

i(b
i)T pi = 3 · √

2/3 = √
6. Note that again we have the same value for the 

cost C and the total energy spent E . For the sum, we obtain C + E = 2
√

6. This is better than the two-edge equilibrium.

Optimum: For a general value of z, we have C + E = 3z + 2/z. This is minimized for z = √
2/3, i.e., the equilibrium of the 

two-norm is equal to the minimum combined cost solution.

5.1.3. Computer simulations
Table 1 shows the results of a typical simulation. For the simulation we discretized the differential equation and applied 

an Euler forward scheme.

5.2. The Bow-Tie Graph

Consider the graph shown in Fig. 2; we refer to this graph as a bow-tie. The edge costs are as shown and we are sending 
one unit each between nodes 0 and 1 and nodes 4 and 5, i.e., b0 = (1, −1, 0, 0, 0, 0) and b1 = (0, 0, 0, 0, 1, −1). For each pair 
the direct path connecting the pair has length 10, the path using the middle edge has length L + 2 and the path using the 
edge connecting the other pair has length 14. Figs. 3 and 4 show the results of a simulation. Initial x-values were chosen 
randomly in the interval [1, 10]. We observe:
8
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Table 1
The initial z-values were chosen randomly between 
1/1000 and 1. In all cases, the system converged to the 
3-edge equilibrium. Note that 0.82 ≈ √

2/3 and 1.33 ≈
4/3.

the final z-values of the 
three edges

two-norm dynamics 0.8160 0.8167 0.8166
one-norm dynamics 1.331 1.327 1.342

Fig. 2. The top and the bottom horizontal edge have cost 10, the middle horizontal edge has cost L, and all other edges have cost 1. We are sending one 
unit between nodes 0 and 1 and one unit between nodes 4 and 5.

Fig. 3. Simulation of the Bow-Tie Graph: The plot depicts the quantities q(1)

b , q(1)
m , and q(1)

t (= the split-up of the flow from node 0 to node 1 across the three 
horizontal edges bottom, middle, and top) and xm (= the capacity of the middle edge) as a function of L in the range [8, 10.3]. For L < 8, the quantifies are 
as for L = 8, and for L > 10.3, the quantities are as for L = 10.3. For q(2) the flow across the middle edge is the same and the flow across the other edges is 
reversed. For all L, q(1)

b + q(1)
m + q(1)

t = 1. (1) The image on the left shows q(1)

b and q(1)
t . (2) The image on the right shows the capacity xm and the flow q(1)

m

across the middle edge. We have xm =
√

2(q(1)
m )2 = √

2 · q(1)
m in the case of the two-norm and xm = 2q(1)

m in the case of the one-norm. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

• For L ≤ 8, both dynamics generate essentially the same solution. All flow is essentially routed through the middle edge.
• For the two-norm dynamics: For L < 8.5, the sharing effect is strong and basically all flow is routed through the middle 

edge. Note that for L > 8, the path through the middle edge is not the shortest path for either demand. Starting at 
L = 8.5, the top and the bottom edge are also used. For L ≥ 10, only the top and the bottom edge are used and this 
may give the impression that there is no sharing effect for large L. This is not the case. The solution for L = ∞ is easily 
computed analytically. Because of symmetry, a fraction a of each flow is routed the short way (length 10) and a fraction 
1 − a is routed the long way (length 14). So through each edge, we have a flow of value a and a flow of value 1 − a
and hence all edges will have the same capacity in equilibrium; call it x. Therefore the flows must be in the same ratio 
as the costs, i.e., a/(1 − a) = 10/14. This solves to a = 7/12. Then x = √

a2 + (1 − a)2 = √
74/12 ≈ 8.6023. The cost of 

the network is then 24 · √
74/12 = 2

√
74 ≈ 17.2 and the dissipated energy is the same. Assume now that we delete 

the vertical edges. Then each demand is routed separately and the bottom and the top edge will have a capacity of one 
each. The cost of the network will be 20 and the dissipated energy will also be 20. This is considerably more than the 
cost of the network constructed by our dynamics.

• For the one-norm dynamics: Starting at L = 8.05, the top and the bottom edge are also used. For L ≥ 10.3, only the top 
and the bottom edge are used.
9
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L 6.5 6.8 7.1 7.4 7.7 8.0 8.3 8.6 8.9 9.2 9.5 9.8
C 13.2 13.6 14.0 14.5 14.9 15.3 15.7 16.1 16.4 16.6 16.7 16.7
E 13.2 13.6 14.0 14.5 14.9 15.3 15.7 16.1 16.4 16.6 16.7 16.7

Fig. 4. Simulation results for the two-norm dynamics for the bow-tie graph. The cost C = cT x and the energy E = ∑
i(b

i)T pi for the limit states for different 
values of L. Note that C = L always.

Fig. 5. The polygonal region on the left is a digitization of the Greater Tokyo Region. The red dots indicate major cities. We set up 140 demands. For each 
red city, we created a demand of one unit to any other red city within a certain distance threshold. The threshold is about 1/2 the distance between the 
topmost and the bottommost red point. The region on the right is approximately the right lower quadrant of the region on the left. For the placement 
of the terminals we tried to copy the placement shown in Fig. 1. We set up 282 demands, again between cities below a certain distance threshold. The 
demands are one, except if one of the terminals corresponds to Tokyo. Then the demand is seven; this is as in [42].

• For the two-norm dynamics, the cost C and the dissipated energy E are equal in the limit; see Fig. 4.

5.3. A case study inspired by [42]

In [42] the slime molds ability to construct elegant networks in investigated. The slime is allowed to grow in a region 
that is shaped according to the greater Tokyo region and food is provided at many different places. Fig. 1 shows the results 
of the wet-lab experiment and compares a network constructed by the slime to the railroad network around Tokyo. The 
paper also reports about a computer experiment. Repeatedly a pair of food sources was chosen at random and a step of the 
shortest path dynamics was executed. Figure 4 in [42] shows the results of the computer experiment. No details are given 
in the paper and also the positions of the food sources are not given in detail.

We tried to repeat the experiment with the two-norm dynamics. For this purpose, we digitized the boundary of the 
Greater Tokyo region in the form of a polygonal region and overlayed a regular grid in which each node is connected to 
its up to eight neighbors (north, northwest, west, southwest, south, southeast, east, northeast) inside the region. The edge 
lengths are 1 for the horizontal and vertical edges and 1.41 for the diagonal edges. We perturbed the edge lengths slightly 
by adding r · 0.05 for a random integer r ∈ [−3, 3] so as to avoid many equal length path. We chose the terminals in two 
different ways.

First choice: We chose the largest 25 cities in Greater Tokyo region according to Wikipedia and generated 140 demands. 
Each city was connected to all other cities whose distance is below a certain threshold. For the threshold we chose 
about 1/2 times the diameter of the region. The left side of Fig. 5 shows the input and Fig. 6 shows the output of 
a computer simulation.

Second choice: We mimicked the choice of sites used in [42]. We generated 282 demands again between any pair of sites 
whose distance is below a certain threshold. The demands are 1, except if one of the terminals corresponds to 
Tokyo. Then the demand is seven; this is as in [42]. The right side of Fig. 5 shows the input and Fig. 7 shows the 
output of a computer simulation.

6. Preliminaries

We recall the definition of energy dissipation and cost. For a capacity vector x ∈ Rm≥0 and a vector f ∈ Rm with 
supp( f ) ⊆ supp(x), we use
10
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Fig. 6. An output of a simulation of the two-norm dynamics on the left instance in Fig. 5. The graph in the upper left corner shows the initial graph. Each 
node is connected to its up to 8 neighbors. The length of the horizontal and vertical edges is approximately 1, the length of the diagonals is approximately 
1.41. All capacities are 0.5 initially and the capacity of an edge is indicated by its thickness. The following figures show the state after 1950 and 4875 
iterations. For the situation after 4875 iterations, we also show the reduced graph where we iteratively removed nodes of degree one (which are not 
terminals). The numbers inside the nodes are unique identifiers; they have no meaning beyond this.

Ex( f ) =
{∑

e(ce/xe) f 2
e if supp f ⊆ supp x,

∞ if supp f � supp x,

to denote the energy dissipation of f with respect to x. Strictly speaking we should sum only over the e in supp x. We use 
the convention 02/0 = 0 to justify summing over all edges e. Further, we use

C( f ) =
∑

e

ce| fe| = cT | f |

to denote the cost of f . Note that

Ex(x) =
∑

e

(ce/xe)x2
e =

∑
e

cexe = C(x).

We use R to denote the diagonal matrix with entries ce/xe . Energy-minimizing solutions are induced by node potentials 
p ∈Rn according to the following equations:

b = Aq, (14)

q = R−1 AT p, (15)

AR−1 AT p = b. (16)
11
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Fig. 7. An output of a simulation of the two-norm dynamics on the right instance in Fig. 5. The graph in the upper left corner shows the initial graph. Each 
node is connected to its up to 8 neighbors. The length of the horizontal and vertical edges is approximately 1, the length of the diagonals is approximately 
1.41. All capacities are 0.5 initially and the capacity of an edge is indicated by its thickness. The figure on the right show the state after 16000 iterations 
where we iteratively removed nodes of degree one.

We give a short justification why the equations above characterize the energy minimizing solution to the linear system. 
The energy minimizing solution q minimizes the quadratic function 

∑
e(ce/xe)q2

e subject to the constraints Aq = b and 
supp(q) ⊆ supp(x). The KKT conditions (see [16, Subsection 5.5]) state that at the optimum, the gradient of the objective is 
a linear combination of the gradients of the constraints, i.e.,

2(ce/xe)qe =
∑

i

pi Ai,e for all e ∈ supp(x)

for some vector p ∈ Rn and qe = 0 for e /∈ supp(x). Absorbing the factor 2 into p yields equation (15). Substitution of (15)
into (14) gives (16). The energy-minimizing solution is unique. It exists if and only if b ∈ ImA. Node potentials p are not 
unique, but the values of bT p and pT L(x)p are equal for all solutions of (16).

Lemma 5. Assume x > 0. Then KerL(x) = KerAT and ImL(x) = ImA. The values bT p, pT L(x)p and q = XC−1 AT p do not depend on 
the particular solution of L(x)p = b.

Proof. Clearly, KerAT ⊆ KerL(x). So assume z ∈ KerL(x). Then L(x)z = 0 and hence zT L(x)z = 0. Let D1/2 be the diagonal 
matrix with entries 

√
xe/ce . Then

0 = zT L(x)z = zT AD1/2 D1/2 AT z = ||D1/2 AT z||22
and hence D1/2 AT z = 0 and further 0 = AT z. So z ∈ KerAT .

Clearly, ImL(x) ⊆ ImA. So assume b /∈ ImL(x). Then the rank of the matrix obtained by augmenting L(x) by the column 
b is larger than the rank of L(x) (Rouché-Capelli theorem) and hence there is a vector r such that rT b �= 0 and rT L(x) = 0. 
Since L(x) is symmetric, L(x)r = 0 and hence r ∈ KerL(x) = KerAT . So 0 = AT r = (rT A)T . Thus r also proves b /∈ ImA.

Let p and p̄ be node potentials. Then L(x)p = b = L(x)p̄ and hence p̄ − p ∈ KerL(x). Then

bT p̄ = bT p + bT (p̄ − p) = bT p + pT L(x)T (p̄ − p) = bT p + pT L(x)(p̄ − p) = bT p

and

XC−1 AT p̄ = XC−1 AT p + XC−1 AT (p̄ − p) = XC−1 AT p.

Finally, bT p = pT L(x)p. �
For the arc-node incidence matrix A of a connected graph, the kernel KerAT consists of the all-ones vector in Rn . We 

can make the node potential unique by requiring pv = 0 for some fixed node v , i.e., by grounding node v .

Lemma 6. Let 	 be the dimension of KerAT and let K ∈ Rn×	 be a matrix whose columns form a basis of KerAT . Let V ′ ⊆ [n] with 
|V ′| = 	 be such that the submatrix of K with rows selected by V ′ is nonsingular. Then the solution p to L(x)p = b with pv = 0 for all 
v ∈ V ′ is unique, i.e. “grounding all nodes in V ′ makes the potential unique”.
12
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Proof. Observe first that such a solution exists. Let p be an arbitrary solution to L(x)p = b. Then there is a vector λ ∈ R	

such that (Kλ)v = pv for all v ∈ V ′ and hence p − Kλ is the desired node potential. Assume now that we have two solutions 
p and p′ with pv = p′

v for all v ∈ V ′ . Then p − p′ ∈ KerL(x) = KerAT and (p − p′)v = 0 for all v ∈ V ′ . Since p − p′ ∈ KerAT

there is a λ ∈R	 such that p − p′ = Kλ. Then (Kλ)v = 0 for all v ∈ V ′ . Since the columns of K are independent, this implies 
λ = 0 and hence p = p′ . �

The next Lemma gives alternative expressions for the energy Ex(q) of the minimum energy solution.

Lemma 7. Ex(q) = ∑
e(ce/xe)q2

e = bT p = pT L(x)p, where p is any solution of (16).

Proof. This holds since

Ex(q) = qT Rq = pT AR−1 R R−1 AT p = pT AR−1 AT p = pT L(x)p = pT b. �
Finally, we recapitulate a bound on the components of q established in [40] and slightly improved form in [10, Lemma 

3.3].

Lemma 8. Let D be the maximum absolute value of a square submatrix of A. Then |qe| ≤ D||b||1 for every e ∈ [m].

7. Existence of a solution

We prove Theorem 1. The right-hand side (8) is locally Lipschitz-continuous in x. The function ge is locally Lipschitz by 
assumption, the qi ’s are infinitely often differentiable rational functions in the xe and hence locally Lipschitz. Furthermore, 
locally Lipschitz-continuous functions are closed under additions and multiplications. Thus x(t) is defined and unique for 
t ∈ [0, t0) for some t0.

Since ge is non-negative, we have ẋe ≥ −x and thus xe ≥ xe(0)e−t . Hence, x(t) > 0 for all t . By assumption bi ∈ ImA for 
all i, and hence whenever x(t) > 0, we have solutions qi with supp(qi) ⊆ supp(x).

In Section 9, we will show that L is a Lyapunov function for the dynamics (8). Thus

cT x ≤ L(x) ≤ L(x(0))

and hence x stays in a bounded domain.
It now follows from general results about the solutions of ordinary differential equations [20, Corollary 3.2] that t0 = ∞.

8. Fixed points

A point x is a fixed point iff ẋ = 0. We use Fg for the set of fixed points of (8).

Lemma 9 (The fixed points of the generalized Physarum dynamics). x ∈Fg iff for all e either xe = 0 or | |�e| |2 = 1. The latter condition 
is equivalent to xe = | |Q e| |2 or | |(AT )e P | |2 = ce . For x ∈Fg , C(x) = E(x).

Proof. We have ẋ = 0 iff we have xe = 0 or ge(| |�e| |2) = 1 for all e. Since ge is increasing and ge(1) = 1, the latter condition 
is tantamount to | |�e| |2 = 1 which expands to 

∑
i((AT )e P i)2 = c2

e . Multiplying both sides by (xe/ce)
2 yields x2

e = ∑
i(Q e,i)

2.
For x ∈Fg , we have

E(x) =
∑

e

∑
i

ce

xe
(Q e,i)

2 =
∑

e

ce

xe
· x2

e =
∑

e

cexe = C(x). �

9. Lyapunov function

Let

L(x) = 1

2

(
cT x +

k∑
i=1

(bi)T pi

)
.

We will show that L is a Lyapunov function for the dynamics (8). The function L was introduced in [19]. For k = 1, [18]
shows that L is a Lyapunov function for the one-norm dynamics and [27] shows that this holds true also for the generalized 
Physarum dynamics. The calculations below generalize the calculations in these papers. They are similar to the calculations 
in [14, Lemma 2.6].
13
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Lemma 10 (Gradient of L). For all e ∈ E,

∂

∂xe
L(x) = ce

2
(1 − ||�e||22). (17)

Proof. Recall L(x) = A XC−1 AT . Let e ∈ [m] be arbitrary. Then ∂
∂xe

L(x) = 1
ce

Ae(AT )e . From L(x)p = b and ∂
∂xe

b = 0, we obtain

0 = ∂

∂xe
L(x)p = ∂L(x)

∂xe
p + L(x)

∂ p

∂xe

and thus

L(x)
∂ p

∂xe
= − 1

ce
Ae(AT )e p.

Hence, we have

∂

∂xe
bT p = bT ∂ p

∂xe
= pT L(x)

∂ p

∂xe
= − 1

ce
pT Ae(AT )e p = −ce

(
(AT )e p

ce

)2

,

and more generally,

∂

∂xe

∑
i

(bi)T pi = −ce

∑
i

(
(AT )e pi

ce

)2

= −ce||�e||22.

The claim follows. �
Theorem 5. The function L : � 
→ R is a Lyapunov function for the dynamics (8), i.e., L(x) ≥ 0 for all x ∈ �, and d

dt L(x(t)) ≤ 0 for 
all t. Let

V = { x ∈ � : 〈∇L(x), ẋ〉 = 0 } .

Then V =Fg .

Proof. L(x) ≥ 0 for all x ∈ � is obvious.
Since d

dt L(x(t)) = 〈∇L(x), ̇x〉, we obtain

d

dt
L(x(t)) =

∑
e

ce

2
(1 − ||�e||22) · xe(ge(||�e||2) − 1) ≤ 0,

where the inequality holds since ge(| |�e| |2) − 1 and | |�e| |2 − 1 have the same sign, as ge is a non-negative and increasing 
function with ge(1) = 1.

We have equality if and only if for all e either xe = 0 or �e = 1. Thus x ∈ V if and only if x ∈ Fg . �
10. Further properties of the Lyapunov minimum

We give two alternative characterizations for the minimum of the Lyapunov function. This extends [18, Proposition 2]
from k = 1 to arbitrary k.

Theorem 6. The following quantities MinQ, MaxP, and MinL are equal.

MinQ = min
Q ∈Rm×k

{∑
e

ce||Q e||2 : A Q = B

}
, (18)

MaxP = max
P∈Rn×k

{
Tr[BT P ] : ||(AT )e P ||2 ≤ ce for all e

}
, (19)

MinL = min
x∈Rm≥0

L(x). (20)

Moreover, there are optimizers Q ∗ , P∗ and x∗ such that

x∗
e = ||Q ∗

e ||2 for all e,

L(x∗)P∗ = B,

Q ∗ = X∗C−1 AT P∗.
14
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Lemma 11. Let Q ∗ be a minimizer of (18) and let x∗ be defined by x∗
e = | |Q ∗

e | |2 for all e. Then x∗ ∈ Fg . Moreover, there is a potential 
matrix P ∈ Rn×k such that L(x∗)P = B and Q = X∗C−1 AT P , 

∑
e ce| |Q e| |2 = Tr[BT P ] = L(x∗), and | |(AT )e P | |2 ≤ ce for all e. The 

objective values of (18) to (20) satisfy MinL ≤ MinQ ≤ MaxP.

Proof. We start by slightly reformulating the minimization problem (18). This is necessary since the function Q e 
→ | |Q e| |2
is not differentiable for Q e = 0 and hence the KKT-conditions cannot be applied. We formulate equivalently:

min
∑

e

cexe subject to A Q = B, x2
e ≥ ||Q e||22, xe ≥ 0 for all e,

with variables Q ∈ Rm×k and x ∈ Rm . Let Q ∗ and x∗ be an optimal solution. Then clearly x∗
e = | |Q ∗

e | |2 for all e. Using 
the Lagrange multipliers P ∈ Rn×k for the equations A Q = B , and α ∈ Rm≥0 and β ∈ Rm≥0 for the inequalities, the KKT 
conditions [16, Subsection 5.5] become

ce − 2αex∗
e − βe = 0 for all e, (21)

P T (AT )e + 2αe Q ∗
e = 0 for all e, (22)

αe((x∗
e )

2 − ||Q ∗
e ||22) = 0 for all e, (23)

βex∗
e = 0 for all e. (24)

Here the first two conditions state that at the optimum, the gradient of the objective with respect to the variables xe and 
Q e,i must be linear combinations of the gradients of the active constraints and the last two conditions are complementary 
slackness (= a Lagrange multiplier can only be non-zero if the constraint is tight). We also have the feasibility constraints

A Q ∗ = B, (25)

x∗
e ≥ 0 and x∗

e ≥ ||Q e||2 for all e. (26)

Separating the two terms in (22), squaring and summing over i, and using (22) and (21), we obtain

||(AT )e P ||22 =
∑

i

((pi)T Ae,i)
2 = 4α2

e ||Q ∗
e ||22 = 4α2

e (x∗
e )

2 = (ce − βe)
2 ≤ c2

e ,

where the last inequality uses βe = 0 if x∗
e > 0 by (24) and βe = ce if x∗

e = 0 by (21).
If Q ∗

e �= 0, then x∗
e �= 0 and hence βe = 0 and ce = 2αex∗

e or 2αe = ce/x∗
e . In particular, αe �= 0 and hence (22) implies

Q ∗
e = 1

2αe

∑
v

P v Av,e = x∗
e

ce
AT

e P . (27)

This equation also holds if Q ∗
e = 0 and hence x∗

e = 0. Multiplying by (AT )e from the left and summing over e yields

B = A Q ∗ = A XC−1 AT P . (28)

Thus P i is a potential for the i-th problem with respect to x∗ and, by (27) (Q ∗)i is the corresponding electrical flow. Thus 
x∗ ∈Fg by Lemma 2. Moreover,∑

i

(P i)T bi =
∑

i

(P i)T A(Q ∗)i

=
∑
i,v,e

P v,i Av,e Q ∗
e,i

=
∑

i,v,e, Q e �=0

P v,i Av,e Q ∗
e,i

=
∑

i,e, Q e �=0

ce
Q ∗

e,i Q ∗
e,i

||Q ∗
e ||2

=
∑

e

ce||Q ∗
e ||2.

Here the fourth equality comes from (27) and x∗
e �= 0 if Q ∗

e �= 0; note that

∑
Ave P vi = (AT )e P i = ce

x∗
e

Q ∗
e,i = ce

Q ∗
e,i

||Q ∗
e ||2 .
v

15
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We conclude that P is a feasible solution to (19). Thus MaxP ≥ MinQ .
Since x∗ ∈Fg , L(x∗) = cT x∗ = Tr[P T L(x∗)P ]. Also, x∗

e = | |Q ∗
e | |2 by definition of x∗ . Thus∑

e

ce||Q ∗
e ||2 = cT x∗ = L(x∗)

and hence MinL ≤ MinQ . �
Lemma 12. MaxP ≤ MinL.

Proof. The constraint | |(AT )e P | |2 ≤ ce in (19) can be equivalently written as

ce

2

(
|| 1

ce
(AT )e P ||22 − 1

)
≤ 0.

Then the Lagrange dual with non-negative multipliers xe is an upper bound for MaxP, i.e.,

MaxP ≤ inf
x≥0

sup
P

∑
i

(bi)T P i −
∑

e

xece

2

(
|| 1

ce
(AT )e P ||22 − 1

)
.

The inner supremum can be reformulated as

sup
P

∑
i

(bi)T P i − 1

2

∑
i

(P i)T L(x)P i + 1

2
cT x, (29)

since (xe/ce) 
∑

i((AT )e P i)2 = ∑
i(P i)T Ae(xe/ce)(AT )e P i . Only the first two terms in (29) depend on P . We want to deter-

mine the maximizer3 P (x). Taking partial derivatives with respect to the vectors P i leads to the system

A XC−1 A · P i(x) = bi for all i,

i.e. P i(x) is a solution to L(x)P i(x) = bi for each i. Since∑
i

(bi)T P i(x) = Tr[BT P (x)] = Tr[P (x)T L(x)P (x)] =
∑

i

(P i(x))T L(x)P i(x)

substituting into (29) yields

sup
P

∑
i

(bi)T P i − 1

2

∑
i

(P i)T L(x)P i + 1

2
cT x = 1

2

(
Tr[BT P (x)] + cT x

)
= L(x). �

Lemma 13. Let x∗ ∈ Rm≥0 be a minimizer of L(x). Then x∗ ∈ Fg . Let P be a solution to L(x∗)P = B and let Q = X∗C−1 AT P . Then ∑
e ce| |Q e| |2 =L(x∗) and hence MinQ ≤ MinL.

Proof. Since L(x(t)) is a Lyapunov function of the generalized Physarum dynamics we have x∗ ∈ V . Since V = Fg , x∗ is a 
fixed point and hence for all e, either x∗

e = 0 or | |�e| |2 = 1. Since x∗ is a fixed point, we have L(x∗) = cT x∗ = Tr[P T L(x∗)P ]
and x∗

e = | |Q e| |2 for all e. Thus∑
e

ce||Q e||2 = cT x∗ = L(x∗)

and hence MinQ ≤ MinL. �
11. Convergence to the Lyapunov minimizer

We show that the dynamics converges to the minimizer x∗ of the Lyapunov function under the assumption that the set 
of fixed points of the dynamics is a discrete set.

Assumption 1 (Discrete Set of Fixed Points). Fg is a finite set of points. For any two points in Fg , the values of L are distinct.

Theorem 7. Let x∗ = argminx≥0 L(x). Under the additional Assumption 1, the generalized Physarum dynamics x(t) converges to x∗ .

3 In the proof of Lemma 5, we have seen that L(x) = AD1/2 D1/2 AT and hence bT
i P i − (P i)T L[x]P i = bT

i P i − | |D1/2 AT P i | |22. Thus the maximizer is a finite 
point.
16
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Proof. Since L(x(t)) is non-increasing and non-negative, the dynamics x(t) converges to the set V . By Theorem 5, V = Fg . 
Since Fg is assumed to be a finite set and any two fixed points have distinct values of L, there is a fixed point x̂ =
limt→∞ x(t). Assume for the sake of a contradiction, L(x̂) >L(x∗). Let P (t) be the node potential corresponding to x(t) and 
let P̂ be the potential corresponding to x̂; recall that node potentials are unique. Since P (t) is a continuous function of x(t), 
P (t) → P̂ as t → ∞. Let Ê =

{
e : ||AT

e P̂ ||2 ≤ ce

}
⊆ E and consider the following chain of inequalities:

max
P

{
Tr[BT P ] : ||Ae P ||2 ≤ ce for all e ∈ Ê

}
≥ Tr[BT P̂ ]
= L(x̂)

> L(x
)

= max
P

{
Tr[BT P ] : ||Ae P ||2 ≤ ce for all e ∈ E

}
,

where the first inequality follows by the definition of Ê , the first equality follows from Lemma 2, the strict inequality holds 
by assumption and the last equality follows from Theorem 6. We conclude that Ê is a proper subset of E .

Let e ∈ E\Ê be arbitrary. Then | |(AT )e P̂ | |2 > ce and hence there are t0 > 0 and ε > 0 such that for every t ≥ t0 we have

‖�e(t)‖2 = ‖(AT )e P (t)‖2

ce
> 1 + ε.

Since ge is an increasing function with ge(1) = 1, there is an α > 0 such that for all t ≥ t0

ge (‖�e(t)‖2) ≥ ge (1 + ε) = 1 + α.

Then, for the generalized dynamics we have

ẋe(t) = xe(t) · (ge(‖�e(t)‖2) − 1) ≥ xe(t) · (ge(1 + ε) − 1) ≥ αxe(t).

Further, by Gronwall’s Lemma, it follows that

xe(t) ≥ xe(t0) · eαt,

and thus

x̂e = lim
t→∞ xe(t) ≥ xe(t0) · lim

t→∞ eαt = +∞.

This is a contradiction to the fact that x̂e is bounded.
Finally, if L(x(t)) converges to minx≥0 L(x) and the minimizer x∗ of L is unique, then x(t) must converge to x∗ . �
We conjecture that x(t) always converges to some minimizer of L. If there are several minimizers of L, the limit depends 

on the initial configuration and the function g . Consider the following simple example. We have a network with two nodes 
connected by two links of the same cost, k = 1 and the goal is to send one unit between the two nodes. Let x1 and x2 be 
the capacities of the two links, respectively. For g(z) = z, any combination (x1, x2) with x1 + x2 = 1 is a fixed point.

12. A connection to mirror descent

We show that the mirror descent dynamics on the Lyapunov function L is equal to a variant of the non-uniform squared 
Physarum dynamics.

Lemma 14. The dynamics

d

dt
xe(t) = ce

2
xe(t)

(
||�e||22 − 1

)
is equivalent to the mirror descent dynamics on the Lyapunov function L.

Proof. By Lemma 10, we have for every index e ∈ E that

∂

∂xe
L(x) = ce

2
(1 − ||�e||22). (30)

On the other hand, the mirror descent dynamics on the Lyapunov function L is given by

d
xe(t) = −xe(t)

∂
L(xe(t))

(30)= ce · xe(t)(||�e||22 − 1). �

dt ∂xe 2

17



JID:TCS AID:13259 /FLA Doctopic: Theory of natural computing [m3G; v1.313] P.18 (1-20)

V. Bonifaci, E. Facca, F. Folz et al. Theoretical Computer Science ••• (••••) •••–•••
As is [14], we can use the connection to mirror descent to estimate the speed of convergence of the Physarum dynamics 
to the Lyapunov minimum; [14] builds up on [3,44].

For a differentiable function f in m variables, the Bregman divergence D f is a function in 2m variables defined by the 
equation

D f (x, y) = f (x) − f (y) − 〈∇ f (y), x − y〉 ,

i.e., as the difference of the function value at x and the value at x of the tangent plane to f at y. Clearly, if f is convex, D f
is non-negative.

Lemma 15. Let h :Rm≥0 →R be defined by

h(x) =
∑

e

xe ln xe −
∑

e

xe.

Then h is convex on Rm≥0 , Dh is non-negative, and

Dh(x, y) =
∑

e

xe ln xe −
∑

e

xe ln ye −
∑

e

xe +
∑

e

ye,

Proof. The function h is convex in xe (partial derivative ln xe and second partial derivative 1/xe). For its Bregman divergence 
Dh , we compute

Dh(x, y) = h(x) − h(y) − 〈∇h(y), x − y〉
=

∑
e

xe ln xe −
∑

e

xe − (
∑

e

ye ln ye −
∑

e

ye) −
∑

e

(xe − ye) ln ye

=
∑

e

xe ln xe −
∑

e

xe ln ye −
∑

e

xe +
∑

e

ye.

So Dh is the relative entropy function. �
Fact 1. [14, Lemma 2.2] L is convex.

Theorem 8. Let x∗ be the global minimizer of L(x). For the dynamics ẋe = (ce/2) · xe(| |�e| |22 − 1), we have

L(x(t)) ≤ L(x∗) + 1

t
Dh(x∗, x(0)),

for all t ≥ 0. In particular,

lim
t→∞L(x(t)) = L(x∗).

Proof. According to (30) we have

∂

∂xe
L(x) = ce

2

(
1 − ||�e||22

)
and ẋe = xe

(
ge(||�e||22) − 1

)
.

The time derivative of Dh(x∗, x(t)) is given by

d

dt
Dh(x∗, x) = d

dt

m∑
e=1

x∗
e ln x∗

e − d

dt

∑
e

x∗
e ln xe − d

dt

∑
e

x∗
e + d

dt

∑
e

xe

=
m∑

e=1

x∗
e

(
− 1

xe
· d

dt
xe

)
+

∑
e

d

dt
xe

=
∑

e

(xe − xe
∗) ce

2
(||�e||22 − 1)

= −〈(x − x∗),∇L(x(t))〉.
We now consider the function

H(t) = Dh(x∗, x(t)) + t
[
L(x(t)) −L(x∗)

]

18



JID:TCS AID:13259 /FLA Doctopic: Theory of natural computing [m3G; v1.313] P.19 (1-20)

V. Bonifaci, E. Facca, F. Folz et al. Theoretical Computer Science ••• (••••) •••–•••
Since d
dt L(x) ≤ 0, by Lemma 5, and DL(x∗, x) ≥ 0 for all x, we obtain

d

dt
H(t) = − 〈∇L(x(t)), x(t) − x∗〉 +L(x(t)) −L(x∗) + t · d

dt
L(x(t))

≤ − [
L(x∗) −L(x(t)) − 〈∇L(x), x∗ − x(t)

〉]
= −DL(x∗, x(t))

≤ 0.

Hence H(t) ≤H(0) for all t ≥ 0 and therefore

Dh(x∗, x(t)) + t
[
L(x(t)) −L(x∗)

] ≤ Dh(x∗, x(0)) + 0
[
L(x(0)) −L(x∗)

]
,

and further (using Dh(x∗, x(t)) ≥ 0)

L(x(t)) ≤ L(x∗) + 1

t
Dh(x∗, x(0)). �

13. Conclusions

We proposed a variant of the Physarum dynamics suitable for network design. We exhibited a Lyapunov function for the 
dynamics, proved convergence of the dynamics, and gave alternative characterizations for the minimum of the Lyapunov 
function. In the experimental part, we showed that the dynamics captures the positive effect of sharing links and is able to 
construct nice networks.

Many questions remain open. We do not claim any biological plausibility for our proposal and we have studied one 
particular form of the dynamics, namely ẋe = |qe| − xe . Other dynamics have been studied for the shortest path problem, 
e.g., ẋe = |qe|μ − xe with μ > 1 or ẋe = |qe |

ae+|qe | − xe [32,29]. The latter paper also studies the influence of noise on the 
dynamics. An extension to network design would be interesting.

The papers mentioned in the preceding paragraph are theory papers that investigate variants of the basic dynamics (1). 
A different line of research aims at a deeper understanding of the inner workings of Physarum polycephalum, for example, 
how global synchronization can result from random peristaltics [1], how information can be transported and a memory can 
exist in an organism without a nervous system [2,25], and whether tubes of the mold can transfer electricity [43]. There 
seems to be little connection between these lines of research.

We used an Euler discretization of the dynamics for the experiments in Section 5. The resulting algorithm is quite slow. 
The Lyapunov function L is a convex function and hence the tool box of convex optimization is available for computing its 
minimum. Does this lead to a practical algorithm for network design? [45] also uses an Euler discretization of the dynamics 
for their computer experiments. They speed-up the computation by considering only a random subset of the demands 
instead of all demands in each iteration. If the random subset is not too small, the dynamics seem to converge to the same 
solution. Is this true generally?
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