

Hochschule für Technik und Wirtschaft Berlin

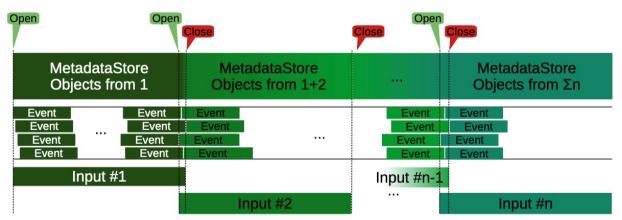
University of Applied Sciences

Challenges and concepts for dynamic metadata

Hermann Heßling

PUNCH4NFDI TA5 March 17, 2022

PUNCH4NDFI - Proposal


4.2 Metadata standards

The data landscape of PUNCH is very diverse, and even more so are the systems used to standardise and record metadata. Many advanced community- or experiment-specific approaches exist, albeit with only limited scope. The NFDI process offers a chance to take a fresh look at issues of **metadata and their use** within the PUNCH community. It quickly becomes apparent that there is **no common understanding of the term "metadata"**. For a productive discussion of metadata standards, the following **distinction** shall be used:

- In-file metadata
 - Astronomy: FITS
 - Particle physics: ROOT
- Data Lake

. . .

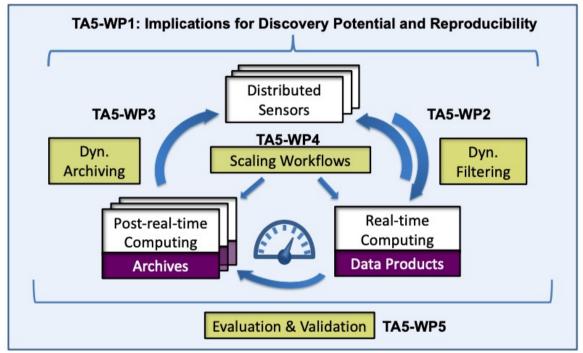
Metadata stores

[ATLAS (2021): multi-threaded metadata service]

- General strategy: "extensions or adaptions of metadata schemes"
- Challenge: out-of-file metadata

PUNCH4NDFI - Proposal

5 Work Programme

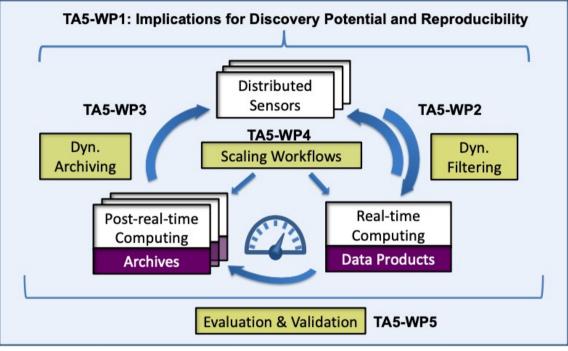

This section lays out the detailed work programme of the PUNCH4NFDI project

- TA2 WP 2.1: Standardized access to data and metadata
- TA4 WP 4.2: Mapping and collating metadata ("standard metadata")
 - Incompatible metadata schemes: EUDAT, EOSC, Rucio, VO, ...
 - Approaches for unifying access to data and metadata
 - Particle physics: CERN open data project
 - Astronomy: IOVA
 - Goal: definition of layers of metadata
 - Top level: publication level
 - Lowest level: raw data [note: in the long-term, (almost) no raw data]
- TA6 WP 6.3: Cross-community efforts towards FAIR data
 - Extended metadata -> needed for accessing cross-community data
 - Dynamic Metadata -> needed for coping with demands from Dynamic Life Cycle

Dynamic Life Cycle

Data Irreversibility: strategies

- Dynamic filtering
 - Extracting relevant information out. of data streams in realtime
 - Machine learning => smart sensors
- Dynamic archiving
 - Feedback from offline workflows to sensor control in near-realtime
 - Offline \Rightarrow online computing
- Scaling
 - Online (e. g. parallelisation of workflows – proprietary, in general)
 - Offline (e. g. analysis of Data Monster)
- Reproducibility
 - Reconstructing how decisions were taken
 - Simulations are essential for validation and understanding

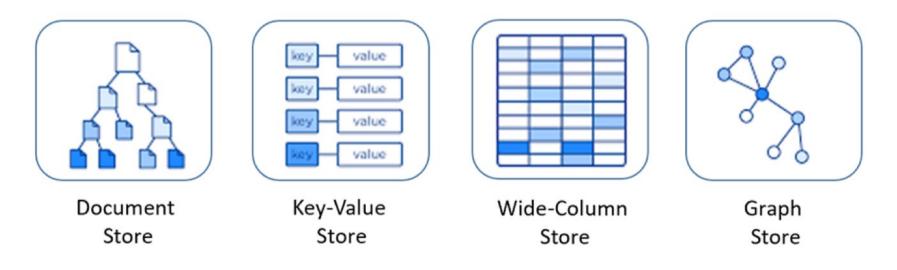


Dynamic Life Cycle Model

Dynamic Life Cycle

Data Irreversibility: strategies

- Dynamic filtering
 - Extracting relevant information out of data streams in realtime
 - Machine learning
- Dynamic archiving
 - Feedback from offline workflows to sensor control in near-realtime
 - Offline \Rightarrow online computing
- Scaling
 - Online (e. g. parallelisation of workflows – proprietary, in general)
 - Offline (e. g. analysis of Data Monster)
- Reproducibility
 - Reconstructing how decisions were taken
 - Simulations are essential for validation and understanding


Dynamic Life Cycle Model

Dynamic Metadata

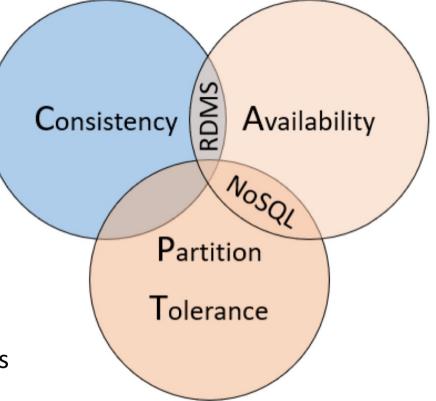
- Drastic increase of metadata volumes
 - Software of Dyn. Filtering (\Rightarrow reproducibility)
 - Constant updates of "quality measures" of archived data
- Flexible data models

Relational vs. NoSQL databases

- Relational database
 - Structured data (tables, normalized data)
 - Query language (SQL)
- Databases with no SLQ
 - Unstructured data
 - Models for accessing and managing data:

Relational vs. NoSQL databases

• CAP theorem


 A distributed data systems can guarantee only two out of three properties

SQL database

- Standard: running on one server
 - Copies of DB on secondary servers
- Good for complex queries
- Not designed for change
 - Modelling in advance, takes up to years
- Limited in volume (see below)

• NoSQL databases

- Running on (geographically) distributed data (-> cloud)
- Good if queries are simple
- Huge data volumes

Limits of SQL DBs

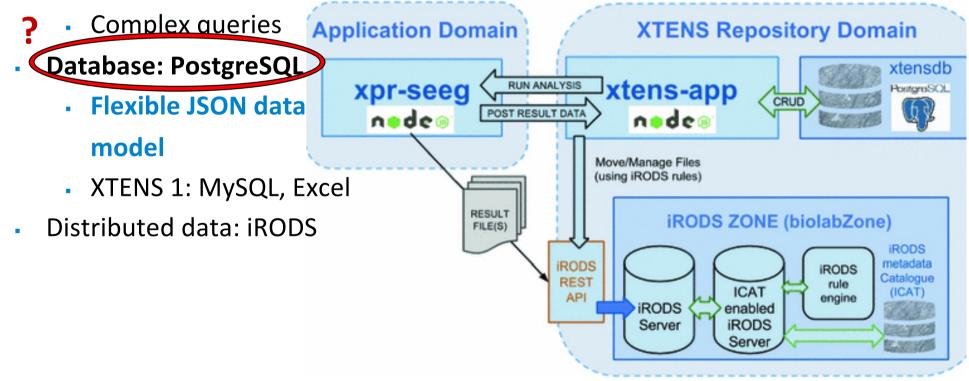
	Max DB	Max table	Max row	Max blob
	size	size	size	size
MySQL	∞	256 TB	64 KB	4 GB
Oracle	2 PB	4 GB	8 K	128 TB
PostgreSQL	∞	32 TB	1.6 TB	4 TB
SAP Hana	?	?	?	?
SQLite	128 TB	file size	file size	2 GB

[https://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems]

Conclusion: SQL DBs do not meet metadata requirements of the Dynamic Life Cycle

Metadata: generic frameworks

- UNICORE
 - HPC middleware service (open source)
 - Accessing distributed computing and federated data resources
- UNICORE metadata system
 - Metadata stored in files close to the data
 - Key-value pairs
 - Extraction: retrieve metadata from files (using Apache Tika)
 - Search: querying metadata (using Apache Lucene)
 - Searching in one store or multiple stores across UNICORE federation
 - Adaption to a particular community: hard work

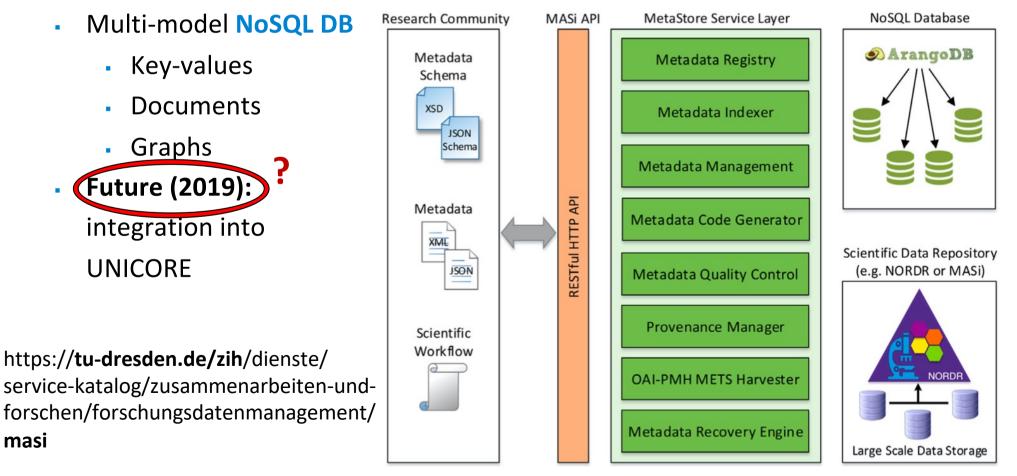

Metadata: genesic frameworks

- Rucio 1.2
 - ATLAS@LHC: highly scalable data management framework
 - Accessing distributed computing and federated data resources

Clients	CLI	Python	JavaScript		
Server	Authentication	REST API	Web UI		Storage
	······				RSE 1
Core	Accounts	Rules	Data Identifiers	Authorisation	RSE 2
	Metadata	Quotas	Scopes		
			···d······		Transfer Tool
Daemons -	Transfers	Rules	Rebalancing	Messaging	Tool 1 Tool 2
	Deletion	Consistency	Dynamic placement	Tracing	
Storage la			RDBMS Analy	vtics Storage	

Metadata: specific frameworks

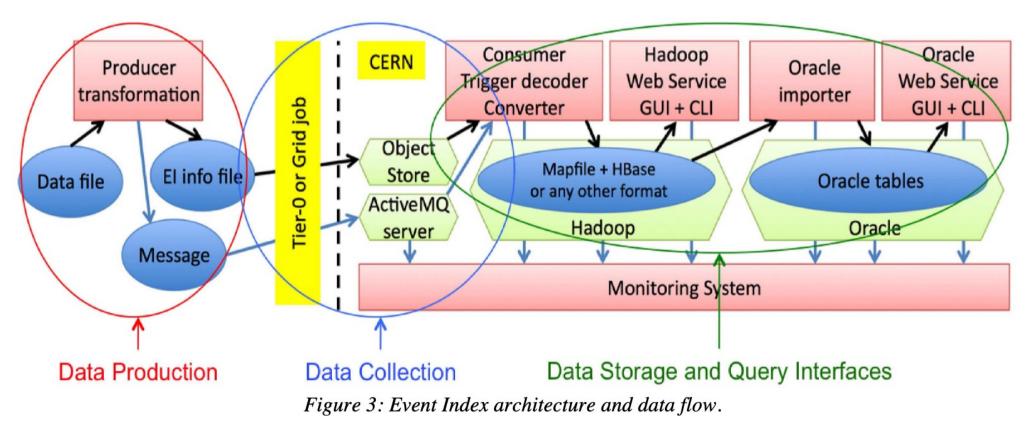
- XTENS 2
 - Repository for heterogeneous data in life science (biomedicine)
 - Manage heterogenous data (samples, any kind of data)
 - Roles to handle data access for any authenticated user


[https://github.com/xtens-suite/xtens-app]

Metadata: specific frameworks

- MASi (Metadata Management for Applied Sciences) 0
 - Generic metadata programming interface

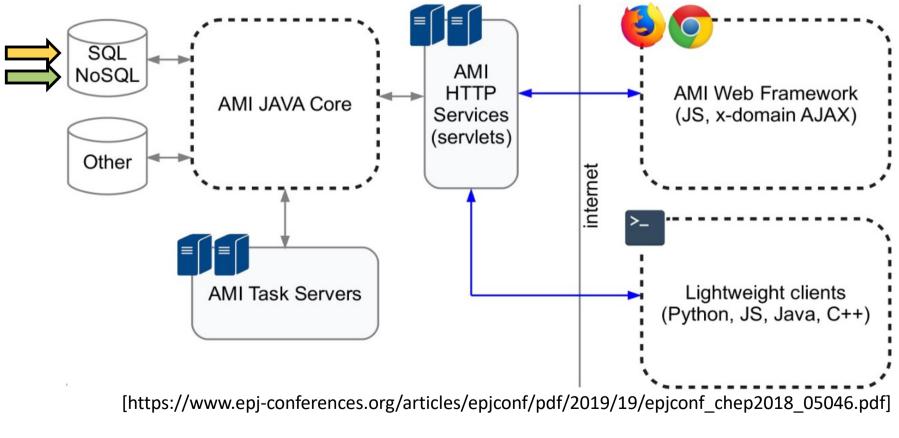
masi


- Open Archive Initiative (OAI) protocol for metadata harvesting
- Supports multi-community research: geography, chemistry, digital humanities

Metadata : hybrid systems

ATLAS @ LHC

- Hadoop (NoSQL): full event infos
- Oracle (SQL): reduced infos for faster queries



[2017: http://lamp.ictp.it/index.php/aphysrev/article/download/1598/576]

Metadata : interfaces

ATLAS @ LHC

- AMI (ATLAS Metadata Interface) 2.0
- Metadata aggregation + transformation + cataloging

