Arrival time stabilization at FLASH and EuXFEL

CHILFEL Seminar

Björn Lautenschlager on behalf of MSK Hamburg, 07.04.2022

Outline

01 Introduction

02 Arrival time measurement

03 Arrival time stabilization at FLASH and EuXFEL

04 Results

05 Summary and Outlook

Introduction

EuXFEL facility

- Total energy up to 17.5 GeV
- Bunch repetition rate up to 4.5 MHz
- Charge usually 250 pC, partly 100 pC
- 10 Hz burst mode
- Three bunch compression chicanes BC1 to BC3
- Three photon beamlines

FLASH facility

- Total energy up to 1.25 GeV
- Bunch repetition rate up to 1 MHz
- Charge between 20 pC to 1 nC
- Two bunch compression chicanes BC1 and BC2
- 10 Hz burst mode
- Two beamlines, plus FlashFOWARD

Arrival time measurement

Bunch arrival time monitor - BAM

DESY. | Arrival time stabilisation at FLASH and EuXFEL | Björn Lautenschlager, 07.04.2022

Bunch arrival time monitor

Measurement and jitter at EuXFEL

- Arrival time measurement of 600 bunch trains (gray lines)
- The arrival time jitter depends on the initial jitter $\Sigma_{t,i}$, the RF phase jitter σ_{ϕ} and the relative amplitude jitter $\frac{\sigma_{v}}{v}$

$$\Sigma_{t,f}^{2} = \left(\frac{R_{56}}{c_{0}}\right)^{2} \cdot \frac{\sigma_{V_{1}}^{2}}{V_{1}^{2}} + \left(\frac{C-1}{C}\right)^{2} \cdot \frac{\sigma_{\phi_{1}}^{2}}{\omega_{rf}^{2}} + \left(\frac{1}{C}\right)^{2} \cdot \Sigma_{t,i}^{2}$$

Laser

Arrival time stabilization at FLASH and EuXFEL

Different feedback loops at EuXFEL and FLASH

Basic principle of the bunch compression chicane

- Path length through the chicane depends on the energy: compression, arrival time
- Principle is used for different feedback loops.
 - Compensation of slow drifts (first bunch, server based), sumvoltage/chirp
 - Compensation of repetitive errors (mean of bunch trains, script based), amplitude/phase
 - Compensation of fluctuations along the bunch train (all bunches, firmware based), amplitude/phase, L-IBFB
- Feedback loops possible at all chicanes DESY. | Arrival time stabilisation at FLASH and EuXFEL | Björn Lautenschlager, 07.04.2022

Courtesy: H. Schlarb

LLRF system as actuator

- LLRF: Control of the RF-field of the accelerator modules, Amplitude A and Phase φ
- Calculates drive signal for high power provided by the klystron
- Three different parts
 - Filling
 - Flat-tops, bunches are accelerated
 - Decay

LLRF system as actuator

- LLRF: Control of the RF-field of the accelerator modules, Amplitude A and Phase φ
- Calculates drive signal for high power provided by the klystron
- Three different parts
 - Filling
 - Flat-tops, bunches are accelerated
 - Decay
- Different controller types like, multi-input multioutput or learning feedforward controller
- Many additional algorithms BLC, DCM, ...

Longitudinal intra-bunch train feedback

- Arrival time set point => arrival time control error
- LLRF system combines RF field error and beam based error
- LLRF controller runs as usual (FF, Feedback, LFF, ...)
- All action on firmware level (FPGA)
- Data send via optical low-latency link
- Software/Server for general settings

Longitudinal Intra-bunch train feedback loop

DESY. | Arrival time stabilisation at FLASH and EuXFEL | Björn Lautenschlager, 07.04.2022

Longitudinal intra-bunch train feedback

- Arrival time set point => arrival time control error
- LLRF system combines RF field error and beam based error
- LLRF controller runs as usual (FF, Feedback, LFF, ...)
- All action on firmware level (FPGA)
- Data send via optical low-latency link
- Software/Server for general settings

Bunch arrival corrector cavity – BACCA at FLASH

Special cavity for the FLASH facility

- Normal conducting cavity with 4 cells
- Located between the third harmonic module ACC39 and BC1
- Energy modulation range ± 50 keV
- Fast energy corrector cavity
- Using the same arrival time information
- BACCA runs together with ACC1
- Idea: ACC1 acts on slow arrival time fluctuations (< 25 kHz) and BACCA on the remaining fast arrival time changes

S. Pfeiffer et all, Status Update of the Fast Energy Corrector Cavity at FLASH

BACCA and L-IBFB at ACC1

Results

Correlation bunch arrival time monitor – photon arrival time monitor

Feedback loops

- Data taken in parallel to user experiments
- L-IBFB loop around the third chicane BAM 3 → A5.L3
- Slow arrival time feedback BAM $3 \rightarrow$ Sumvoltage L3
- Bunch-to-bunch repetition rate 2.25 MHz
- Bunch charge 250 pC

L-IBFB at LLRF station A5

- Arrival time of more then 800 bunches
- 600 bunch-trains (gray lines)

- L-IBFB pushes arrival time stabilities below 10 fs (rms).
- Steady state value reached after 10-15 µs

DESY. | Arrival time stabilisation at FLASH and EuXFEL | Björn Lautenschlager, 07.04.2022

Long term drifts due to ground motion under investigation

- L-IBFB at A5 runs stable over days, BAM 3
- Drifts measured with the BAM 4.1 and 4.2
- Distance between BAM 3 and BAM 4.1(4.2)
 1.5 km lengthening effect
- Period of ~12 hours
- Tide measured near Helgoland (north sea)
- Under investigation

Source tidal data: www.pegelonline.wsv.de

Results FLASH

Data taken during measurement shifts

- First L-IBFB loops around BC1
- BAM.1 \rightarrow ACC1 and BACCA
- Second L-IBFB loop around BC2 BAM.2 \rightarrow ACC23

Results FLASH

Data taken during measurement shift

DESY. | Arrival time stabilisation at FLASH and EuXFEL | Björn Lautenschlager, 07.04.2022

Mean free arrival time BAM.2

Summary and Outlook

Summary

- BAM reaches resolution down to 3-4 fs
- Correlation between BAM and the PAM measurements.
- At XFEL and FLASH arrival time stabilities down to 5 fs (rms).
- At XFEL the L-IBFB loop BAM $3 \rightarrow A5.L3$ runs stable over days. Available for daily operation.
- At FLASH the two L-IBFB loops BAM.1 \rightarrow ACC1 and BAM.2 \rightarrow ACC23 available for daily operation
- BACCA expert knowledge necessary

Outlook

- Long term drifts due to ground motions (tidal effect) but also other aspects of ground motion – disturbances coming from the oceans.
- For EuXFEL three new BAMs close to the experiments.
- Measurement campaign together with the experiments are ongoing. PAM measurement. Intra-train behavior
- R&D project: laser pulse arrival time monitor LAM
- FLASH major upgrade ongoing, new accelerator modules, laser heater, refurbishment of the BC chicane, ...

- L-IBFB with compression signal.
- BAM: ongoing improvement, automation
- Development of a feedback manager.
 - Better incorporation of the different feedback loops
 - Proper exception handling
 - Automation one button solutions

Thank you

Contact

DESY. Deutsches Elektronen-Synchrotron

www.desy.de

Björn Lautenschlager – MSK – Maschine Strahlkontrollen E-Mail: bjoern.lautenschlager@desy.de Phone +49 (0) 40 8998-5453