CHILFEL seminar

BAM and machine stability at SXFEL

Shanshan Cao, Jian Chen, Longwei Lai, Yongbin Leng SXFEL BI Group 2022-04

Background

- Introduction
- Work Review
- Motivation

System Analysis and Optimization

- > LO
- Signal processing window
- > Temperature
- Upgraded BAM system at SXFEL-UF
- Beam stability analysis
- Conclusion

Introduction - SXFEL

Shanghai Soft X-ray FEL Test Facility

Shanghai Soft X-ray FEL User Facility

	Parameters	Test Facility	User FEL-1	User FEL-2	Unit
	FEL type	HGHG-HGHG HGHG-EEHG	SASE	HLSS EEHG	
	Output Wavelength	8.8	2 ~ 10	1.2 ~ 3	nm
	Bunch charge	0.5 ~ 1	~ 0.5	~ 0.2	nC
	Pulse length (FWHM)	~0.5	0.3 - 1	0.3 - 1	ps
	Peak current	~0.5	0.7	0.7	kA
сш	Rep. rate	1 ~ 10	10 ~ 50	10 ~ 50	Hz
ЭПІ					

Introduction - BAM

- To acquire ultra-short and high-brightness light :
 - The precise synchronization between the electron bunches and the seed laser pulses in three-dimensional space
- Time-resolved experiments :
 - Require high temporal resolution & stability
 - Reduce the timing jitter of the electron bunch, correct timing drifts
- Beam arrival time has to be measured !!!
- A temporal resolution better than 100 fs was required by SXFEL.

Work Review-Typical BAM system

Work Review-Beam test results (IBIC2018)

- Large than expected measurement uncertainties :
 - ➤ 1.28 ps @ BAM01
 - ➤ 1.30 ps @ BAM02

- System issues should be checked firstly
- Beam stability also need to be evaluated

Motivation

Questions:

- Why: measurement uncertainties is large than expected?
- What can we do to improve the system performance?
- How to improve the system performance?

Motivation:

- Answer these questions
- Improve the system performance
- Analysis beam stability

System Analysis and Optimization

Source analysis of measurement uncertainty

Total meansurement uncertainties

To be measured:

 Beam jitter
 Energy variation: amplitude fluctuations and phase jitter of the accelerating fields
 Noise of magnet current
 Timing jitter of the electron gun

To be improved:

- Poor stability of 2856-MHz reference signal;
- Poor performance of local oscillator
- Clock jitter

Highly suspicious

- Trigger jitter
 Fruire and disturb an easy to report to the second s
- Environment disturbance: temperature, humidity etc.
- Error caused by phase extraction algorithm

Fix problem of LO

- A signal source analyzer was used;
- The measured phase jitter (RMS) of 2856-MHz reference signal is in expectation.
- Key issue: Local Oscillator lost phase-lock -> Digital local oscillator
- Solution: Strictly phase-locked local oscillator -> Analog local oscillator
- The measured phase noise (RMS) of LO signal and clock signal have improved from ps to fs.

Analysis of the signal processing window

- Question: How to select the signal processing window?
- The phase measurement/extraction uncertainty (PMU) :

 $\blacksquare PMU_n = std(\phi_1, \dots, \phi_n)$

- Different PMU was found at different signal processing window, there is an optimal signal processing window with minimal PMU;
- For example, the PMU at the optimal signal processing window has improved by 41% compared with the 6th signal processing window.

Cao S, Leng Y, Yuan R, et al. Optimization of beam arrival and flight time measurement system based on cavity monitors at the SXFEL[J]. IEEE Transactions on Nuclear Science, 2020, 68(1): 2-8.

Optimal signal processing window

- Furtherly, the relation between the signal damping time and the optimal signal processing window was studied;
- > Simulation result reveals that they have a linear relation.

optimal signal length = $1.204 * \tau + 31$

Cao S, Leng Y, Yuan R, et al. Optimization of beam arrival and flight time measurement system based on cavity monitors at the SXFEL[J]. IEEE Transactions on Nuclear Science, 2020, 68(1): 2-8.

Analysis of Temperature (electronic devices)

- Another experiment was conducted to verify the influence of the temperature around the electronic devices (RFFE, LO, DBPM) outside the tunnel.
- The test results show an approximately linear relationship between the temperature and the beam arrival time:
 - 1.838 ps/°C@BAM01 1.972 ps/°C@BAM02
 - 1.781 ps/°C@BAM03
- A high-performance thermostatic cabinet is required for long-term stability.

1.838ps/°C

1.972ps/°C

Upgraded BAM system at SXFEL-UF

Layout of BAMs at SXFEL-UF

	Parameter BAM#01		BAM#02		BAM#03		BAM#04		BAM#05		
	Freq./GHz	4.6852	4.7204	4.729	4.685	4.6872	4.7262	4.7224	4.6848	4.7232	4.6857
	Bandwidth/ MHz	1.11	1.06	1.24	1.16	1.2	1.2	1.16	1.14	1.17	1.17
	Qload	4221	4453	3814	4039	3906	3939	4057	4106	4046	4004
SHINE											

BAMs at LINAC

BAMs (3)

Thermostatic cabinet GUI

LO Freq = 13.3 MHz * 350 = 4654.2 MHz

Beam test at LINAC

Variation of beam arrival times @ 100pC

- Three upgraded BAMs system installed at SXFEL-UF's LINAC were tested.
- The measurement uncertainties of beam arrival time in short-term (about 10 min):

30 fs @ BAM01 61 fs @ BAM02 62 fs @ BAM03

The system performance has been significantly improved.

Beam stability analysis

Beam energy jitter

Beam instability

■ BFT rms meas. uncertainty = 64 fs

Beam energy jitter

SHINE

BFT rms meas. uncertainty = 65 fs
 Beam energy jitter

System noise Beam orbit fluctuation

Study of beam energy jitter

- The amplitude fluctuations and phase jitter of the accelerating fields will cause energy jitter.
- The energy-dependent path leads to the conversion of beam energy jitter to beam arrival time jitter because of dispersive effects in the magnetic bunch compressor chicane.
- High-energy electron bunch travels a shorter path (green one) while low-energy bunches travel a longer path (red one).

Relation between BFT/BAT and energy

Parameters of a chicane at SXFEL-UF

Symbol	Value	Unit
d	4.00	
<i>a</i> ₀	1.08	m
L _b	0.3	m
<i>d</i> ₁	4.8	m
В	0.1577	Т
h ₀	0.33	m

The relation between the beam energy and beam arrival/flight time:

$$t_{fly} = \left(\sum_{i=1}^{4} l_i + \sum_{1}^{3} l_{i,i+1}\right) / \beta c$$

$$l_{1} = \rho \cdot \theta \qquad l_{12} = \frac{1}{\sin(\alpha)}$$
$$\cos(\alpha) + \cos(\varphi) = \frac{L_{b}}{\rho}$$
$$\rho = \frac{m_{0}c\sqrt{\gamma^{2} - 1}}{eB}$$

• A special case:
$$\varphi = 90^\circ$$

$$t_{fly}(\gamma) = \frac{\left[4\rho\theta + d_0 + 2\,d_1/\cos(\theta)\right]}{\beta c}$$

$$\theta = \arcsin\left(\frac{L_b}{\rho}\right)$$

Relation between BFT/BAT and energy

- The linear relation between the beam energy and beam arrival/flight time was obtained @ beam energy: 230 MeV to 238 MeV.
- The linear factor @ φ=90°
 0.546 ps/MeV
- The linear factor is related to the initial inclination (φ) .

Beam test for verification

- A beam test is performed to verify the relation between the beam energy and beam arrival/flight time.
- ➤ Two BAMs (BAM01 and BAM02) at LINAC are used.
- \succ An analytical magnet and a profile behind BAM02 were utilized.
- Each adjusting the accelerating phase, the data of two BAMs and profile are recorded for multiple times.
- > A total of 14 measurements are conducted.

Measurement of beam energy

- The accelerating phase is gradually adjusted from -109° to -138°, the beam energy decreases, energy spread increases;
- ➤ The range of beam energy: 238.53 MeV to 229.28 MeV
- ➤ The range of energy spread: 0.07% to 0.55%
- Beam energy jitter: 0.02% ~ 0.04%

Meas.	Acc.	Eperav/MeV/	Energy	Energy	
No.	PHASE/°		spread/%	jitter/%	
1	-109	238.53	0.07	0.03%	
2	-113	238.40	~	~	
3	-118	237.62	0.18	0.03%	
4	-120	237.24	0.20	0.02%	
5	-121	236.99	0.23	0.02%	
6	-123	236.40	0.26	0.04%	
7	-123.5	236.11	0.27	0.03%	
8	-124	235.97	0.28	0.03%	
9	-125	235.67	~	~	
10	-126	235.30	~	~	
11	-128	234.46	~	~	
12	-130	233.66	0.40	0.03%	
13	-132	232.57	0.44	0.03%	
14	-138	229.28	0.55	0.03%	

Measurement of beam arrival time

- More than 16000 samples (over 2 hours) were obtained;
- The variation of two beam arrival times are totally different;

- Beam arrival time @BAM01:
 - A small variation
 - peak-to-peak = 0.35 ps;

- Beam arrival time @BAM02:
 - ➤ A large variation;
 - peak-to-peak = 6.5 ps;

Relation between BFT/BAT and energy

A linear relation between the beam energy and beam flight time is also proved by the beam test:

$$t_{BFT} = -k * E + b,$$

 $k = 0.692 \pm 0.018$ ps/MeV, $b = 165.1 \pm 4.1$

Relation between beam energy and BFT

Meas. No.	ACC. PHASE/°	BFT/ps	Mea. Uncertainty/fs
1	-109	-0.001	71
2	-113	0.106	84
3	-118	0.491	73
4	-120	0.634	72
5	-121	0.846	72
6	-123	1.320	81
7	-123.5	1.498	75
8	-124	1.553	86
9	-125	1.772	68
10	-126	2.062	64
11	-128	2.630	70
12	-130	3.234	67
13	-132	3.893	80
14	-138	6.300	88

Discussion

- Both formula-based calculation and beam test result show the linear relation between the beam flight time and beam energy (230MeV to 238 MeV)
- The linear factors obtained by formula-based calculation and beam test results are a bit different: -0.546 ps/MeV and -0.692 ps/MeV
 - Beam energy spread;
 - Beam profile;
 - Beam inclination;
- Given the beam energy rms jitter of 0.02% to 0.04% and the linear factor of 0.692 ps/MeV, the beam flight time rms jitter is expected to be 33 fs to 65 fs.
 - -> a little smaller than the measured results (64 fs to 88 fs)
- Possible reasons:
 - Timing Jitter of reference signal
 - Not fully identical systems
- **Fluctuations of magnet current, environment, etc.** \mathbf{F}

Discussion- new scheme

- Different from the typical scheme, dual-cavity mixing scheme uses the RF signal generated in a cavity as LO signal.
- > Pros:
 - Independent of the performance of LO signal provided by LO
 - > Place inside the tunnel: more stable temperature, humidity
 - Cost-effective for beam flight time measurement
- Beam test at SXFEL:
 - > Meas. uncertainty (RMS) : **38 fs** over 20 min; -> match well with calculated results
 - Meas. uncertainty (RMS) : 53 fs over 18 hours;

Conclusion

Conclusion

- The flawed cavity-based beam arrival time measurement systems at SXFEL-TF have been analyzed and optimized from several aspects;
- The **improved** beam arrival time measurement systems have been **utilized** at SXFEL-UF.
- The beam-based test reveal an obvious beam instability:
 - The beam flight time deviation with and without a magnetic chicane are 64 fs and 10 fs, respectively.
 - beam energy jitter was highly suspected.

• Design and conduct an experiment to evaluate the contribution of beam energy jitter:

- A linear relation between the beam energy and the beam flight time traveling through a magnetic chicane is verified by formula calculation and beam test: -0.546 ps/MeV @ formula calculation & -0.692 ps/MeV @ beam test
- The energy jitter can contribute 33 fs to 65 fs to the beam flight time rms jitter.
- Match well with measurement results based on dual-cavity mixing scheme
- A promising application of the BAM system is used for **beam energy measurement**.
- Another promising scheme (dual-cavity mixing) is offered for beam flight time detection.

SHINE

What we can do next

- Further study beam stability and investigate other factors
- Further explore the possibility of using the BAM system to measure the beam energy
 - Analyze the impact of bunch profile, bunch length, beam inclination, and energy spread, as well as cavity distance on the measurement
 - Analyze the applicability of this approach @energy, energy spread
 - Compare the method with the SBPM-based scheme
- Further exploit and optimize the dual-cavity mixing scheme
 - Analyze the impact of damping time and signal amplitude of RF signals on the measurement
 - Analyze the temperature variation inside the tunnel and its impact on the measurement

Questions? Suggestions?

