

Science & Technology Facilities Council Rutherford Appleton Laboratory

RooUnfold developments

BEP

Tim Adye Rutherford Appleton Laboratory

> Unfolding Framework Project Meeting 15th September 2010

RooUnfold version 1.0.2 improvements

- A simple (though not yet fully-featured) interface to TUnfold
 - Handles 0-, 1-, 2-order polynomial regularisation for 2D and 3D distributions
- Unregularised matrix inversion method (eg. for comparison)
- Unfolding errors for all algorithms can be calculated using MC toys: can switch between
 - bin-by-bin errors (fastest),
 - full covariance matrix from the propagation of errors in the unfolding, or
 - covariance matrix from MC toys (slow)
- Regularisation parameter and errors test procedures
- An option to include the histogram underflow and overflow bins in the unfolding
 - Currently just for 1D histograms
- New convenience methods
 - generic constructors (New(alg), Clone())
 - χ^2 calculation
 - vector accessors
- Class documentation

Error analysis for Bayesian algorithm

Error propagation in SVD method would be even worse – if we hadn't used the MC errors all along

TUnfold

Unregularised matrix inversion

Does not work with large bin migrations, so here we test with no systematic bias

χ^2

- Covariance matrix is often nearly singular or poorly conditioned
 - Is there a better way to calculate χ^2 ?
 - SVD helps, but still gives occasional problems (crazy χ^2)
- In any case, χ^2 is not a good figure of merit when testing unfolding
 - can improve χ^2 by relaxing regularisation \rightarrow smaller errors, but larger residuals

but still useful to show, since its meaning is well-known

• What is a better objective figure of merit?