Home-made TCAD Sensor Simulations

Adriana Simancas

Hamburg, April 27th 2022

Outline

- Introduction to TCAD Simulations
- Applications & Motivation
- TCAD Tools
- Simulation Workflow Example
- TCAD Simulations in DESY and UHH
 - Simulations for Tangerine
 - Simulations in other groups (non exhaustive list)
- Conclusion

Introduction to TCAD Simulations

Technology Computer Aided Design

- Model semiconductor devices
- Use physical models to represent the wafer fabrication steps and device operation
- Works by modeling electrostatic potential (Poisson's equation) and carrier continuity equations (from J. Schwandt):

S. Spannagel et al. https://doi.org/10.1016/j.nima.2020.163784

Applications & Motivation

- Semiconductor Devices:
 - CMOS, FinFET
 - Memory (DRAM, NVM)
 - Power Devices (Si, SiC, GaN)
 - RF Devices (GaAs, InP, GaN)
 - Optoelectronics (CIS, Solar Cells, Photodetectors)
 - Particle Detectors (since 2000's)
 - Tangerine
 - CLICTD
 - ATTRACT FASTpix
 - MALTA/Monopix
 - ELAD
 - AGIPD
 - MSSD
 - MIMOSA

• Development of Semiconductor Particle Detectors:

Applications & Motivation

- Semiconductor Devices:
 - CMOS, FinFET
 - Memory (DRAM, NVM)
 - Power Devices (Si, SiC, GaN)
 - RF Devices (GaAs, InP, GaN)
 - Optoelectronics (CIS, Solar Cells, Photodetectors)
 - Particle Detectors (since 2000's)
 - Tangerine
 - CLICTD
 - ATTRACT FASTpix
 - MALTA/Monopix
 - ELAD
 - AGIPD
 - MSSD
 - MIMOSA

Development of Semiconductor Particle Detectors:

TCAD Tools

- Process Simulations: fabrication steps in silicon process technologies in 2D and 3D.
- **Structure Editing:** build and edit device structures in 2D and 3D using geometric operations.
- Device Simulations: electrical, thermal, and optical characteristics of silicon and compound semiconductor devices in 2D and 3D.
- Interconnect Simulations: physical phenomena concerned with back-end-ofline reliability.

• Frameworks:

- Workbench: graphical environment for creating, managing, executing, and analyzing TCAD simulations.
- Visual: interactive 1D, 2D, and 3D visualization and data exploration environment.
- Process Compact Model Studio: encapsulate relationships between process variations and device performance to identify manufacturing problems.

Simulation Workflow Example

Device Simulations

TCAD Simulations in DESY and UHH

Development of MAPS in 65 nm CMOS Imaging Technology

The Tangerine Project - Towards Next Generation Silicon Detectors

Performance targets:

- Position resolution $\leq 3 \, \mu m$
- Time resolution $\sim 1 10$ ns
- Material budget $\sim 50 \ \mu m \ Si$

Challenges of small collection electrode MAPS:

- Small signal \rightarrow ASIC design
- Slow charge collection (diffusion)
 Electric Field Optimization
 Sensor Design

Sensor Modifications

Standard Layout

N ⁺	D+		
P-			
D+			
Ρ.			

N-blanket Layout

N-blanket with gap Layout

TCAD Simulations: Needs and Strategy

What we need:

- Geometrical parameters
- Doping profiles

Strategy:

Use generic doping profiles and scan over different parameters.

[mη] Ζ

10

20

30

-20

-10

0

X [μm]

Scans:

Select parameter to study, vary it within range of values while fixing all the other parameters and observe behavior of electric, lateral field and depleted volume.

- N-blanket , electric field, -3 V, norm:
- N-blanket with gap Lateral electric field:

No access to real doping profiles

Münker, M. 2018, "Test beam and simulation studies on High Resistivity CMOS pixel sensors", PhD Thesis, Universität Bonn, Bonn.

DESY. | Home-made TCAD Sensor Simulations | Adriana Simancas, 27.04.2022

Results for Standard Layout

 \square

openinc

Pitcr

- Pitch
- P-well opening
- Transient simulation

Results for Standard Layout

• **Pitch:** Decreasing improves depleted volume fraction within the sensor.

• p-well opening: Increasing improves lateral field.

Results for Standard Layout

• **Transient Simulation:** Best case scenario (particle traversing center of pixel)

Results for N-blanket Layout

Substrate and p-well bias

Results for N-blanket Layout

• Bias scan over p-well and substrate simultaneously

• Bias scan over substrate only, p-well fixed at -5 V

Electric Field

Results for N-blanket with gap Layout

• Gap size

Results for N-blanket with gap Layout

n-blanket gap size: varied from $1 - 4 \mu m$, chose 2.5 μm as most sensible value. •

All Layouts After Tuning Parameters

Standard Layout

N-blanket with Gap Layout

N-blanket Layout

DESY. | Home-made TCAD Sensor Simulations | Adriana Simancas, 27.04.2022

Conclusions from Tangerine Simulations

- TCAD simulations using generic doping profiles have provided very useful insights for sensor optimization.
- Sensor layouts: standard, n-blanket and n-blanket with gap.
- Scans: pitch, p-well opening, substrate and p-well bias, n-blanket gap size...
- Understood effect of parameters on electric field and depleted volume.
- Established sensible values for some parameters.
- Complemented with Monte Carlo Simulations using Allpix² (H. Wennlöf, M. A. Del Rio Viera, S. Ruiz Daza).

x (mm)

0.235

0.23

AGIPD Sensor Development for XFEL (UHH)

- Proposed p+n Si pixel detector capable to withstand a dose of up to 1 GGy of 12 keV X-ray for three years operation.
- Studies: radiation damage and breakdown voltage.

R. Klanner¹, E. Fretwurst¹, I. Pintilie², J. Schwandt¹, J. Zhang¹, A. Srivastava¹, T. Poehlsen¹. ¹Institute for Experimental Physics (UHH), Germany ²National Institute of Materials, Romania

A

90

X [um]

Electron Density of irradiated sensor accumulated electrons undepleted region depleted surface area Vertical position (µm) 0 depleted region ۲ [um] 2 eDensity [cm^-3] 40 7.6E+11 6.1E+11 4.6E+11 4 3.0E+11 1.5E+11 60 **ISE-TCAD** simulation 0.0E+00 20 40 60 Horizontal position (µm) **DESY.** | Home-made TCAD Sensor Simulations | Adriana Simancas, 27.04.2022

Electric Field at same bias for different density of oxide charges

UH Ĥ

Page 21

Multi-geometry Silicon Strip Detectors for CMS (DESY)

Al strip

B p⁺-implant

202

Si n-bulk

198

- Test sensor used to study the inter-strip capacitance for the CMS tracker upgrade.
- Studies: inter-strip capacitance, cross-validation with other software and measurements.

Eichhorn, T. 2015, "Development of Silicon Detectors for the High Luminosity LHC", PhD Thesis, Universität Hamburg.

Inter-strip capacitance for different n-bulk doping concentration

د [۲۳] Cross-validation Synopsys, Silvaco and measurements

SiO

1.0E+16 5.5E+13

-5.3E+11

-1.5E+14 -2.7E+16

DopingConcentration Icm^-3

Si₃N

y [Jum]

2

The Hamburg Penta Trap Model(UHH)

- Proposed and validated a new accurate bulk radiation damage model using I-V, C-V and CCE measurements from irradiated samples with 24 GeV/c protons.
- Studies: I-V, C-V, CCE.

J. Schwandt, E. Fretwurst, E. Garutti, R. Klanner, C. Scharf, Georg Steinbrueck, 2018, "A new model for the TCAD simulation of the silicon damage by high fluence proton irradiation"

1.0

0.8

0.6

0.4

0.2

0.0 L -1000

SOE

Passive Strip CMOS Detectors (DESY)

- Study on CMOS strip sensors to possibly cover larger areas than CMOS pixel sensors.
- Studies: charge collection and CV curves for three strip designs.

Electron density for transient simulation (wide implant 30 µm)

DESY. | Home-made TCAD Sensor Simulations | Adriana Simancas, 27.04.2022

Enhanced Lateral Drift Sensors (DESY)

- Improving position resolution by locally engineering the electric field to induce lateral drift of charges, and adding a multiplication layer.
- Studies: electric field and transient simulations.

55 µm

Х

Conclusion

- TCAD is a very powerful tool to simulate semiconductor devices.
- Used in HEP for the past ~20 years.
- Important for development, characterization and optimization of semiconductor detectors.
- Compatible with Monte Carlo simulations.
- Valuable examples of our home-made TCAD sensor simulations.

Thank you!