Clustering and Tracking in Dense Environments with the ITk

Nicola de Biase DESY

21.03.2022 DPG Spring Meeting

CTIDE What is it?

- > In a dense hadronic environment, reconstructed tracks may be very close
 - e.g. in core of high-p_T jets
- > Close-by tracks may share silicon clusters/hits
- > Cluster merging affects
 - Tracking quality (fit quality is reduced)
 - Tracking efficiency (sharing clusters comes with a penalty)
- > Currently, merged clusters are identified and split via NNs
- > A new tracking detector will be introduced for HL-LHC
 - What will change for CTIDE?

CTIDE Why is it important?

- > CTIDE affects physics analyses
- > Measurement of Higgs tri-linear self coupling at HL-LHC
 - Via Di-Higgs measurements with at least one $H \rightarrow b\bar{b}$
 - Need accurate b-tagging
 - Need precise measurement of displaced vertices (Inside of jets)

The ITk Inner tracker for HL-LHC

	1		
	ID	ITk	
	(current)	(HL-LHC)	
		http	ps://cds.cern.ch/record/2800852/files/ATL-ITK-PUB-2022-001.pdf
Technology	Silicon + TRT	Full-silicon	E 1400 ATLAS Simulation Preliminary
reennotegy			The Layout: 23-00-03
			1000
Divol nitch		25µm×100µm/	η = 2.0
Pixel pilch	ͻͽμ៳ϫ૩ͽͽμ៳	50µm×50µm	600
			100
			η = 3.0
Strip pitch	80µm	69-85µm	$\eta = 4.0$
			0 500 1000 1500 2000 2500 3000 3500
<pile-up></pile-up>			z [mm]
(Interactions	Run-2: 13÷38		Strip
per bunch	Run-3: 60		Suip
crossing)			

Tracking in ATLAS General

https://indico.cern.ch/event/504284/contributions/ 2023875/attachments/1240146/1823137/ HGray_Zurich_Tracking.pdf

DESY.

Monte Carlo Samples

- > Detector simulation obtained via Geant4
- > Processes:
 - $Z' \rightarrow$ had: Inclusive Z' hadronic decay with flat pT spectrum and no pile-up
 - $Z' \rightarrow \tau \tau$: Z' decay to hadronically decaying τ , no pile-up
 - $t\overline{t}$ PU0: Standard Model (SM) top pair production, no pile-up
 - tt
 PU200: Standard Model (SM) top pair production, 200 pile-up interactions per bunch crossing

Is merging relevant? Track merging

Merging-affected tracks (section S) =

tracks with a merged cluster in S

tracks with ≥ 2 clusters in S

- Merged cluster = ≥2 contributing particles
- Relevant in all sections (Especially at high p_T relevant for new physics!)

> PU increases merging

ATLAS Simulation	- Work	In Progress
------------------	--------	-------------

Process	Whole	Barrel	Inclined	Ring
tī PU0	1.9%	1.1%	0.4%	2.3%
<i>tī</i> PU200	3.3%	2.1%	0.5%	3.4%
Z' PU0	10.7%	11.2%	2.8%	3.7%

Table 2: Track merging rate in different sections of the pixel detector.

ATLAS Simulation - Work In Progress

Process	Whole	Barrel	Endcap
tī PU0	1.8%	1.6%	1.4%
<i>tī</i> PU200	6.8%	5.3%	5.9%
Z' PU0	18.9%	18.6%	9.0%

Table 3: Track merging rate in different sections of the strip detector.

Is merging relevant? Tracks inside of jets

- > Pixel split hits = used for multiple tracks and merged
- > Pixel shared = used for multiple tracks but NOT merged
- Strip shared = used for multiple tracks

Track overlap is relevant at the centre of jets

8

How does merging degrade tracking? Residuals and pulls

Residual = (Reco) - (truth)

$$\mathsf{Pull} = \frac{(\mathsf{Reco}) - (\mathsf{truth})}{\sigma(\mathsf{Reco})}$$

How does merging degrade tracking? Cluster-truth residuals

- > Local coordinates:
 - X: in the r- ϕ plane
 - Y: in the η direction

> Merging degrades hit position resolution

How does merging degrade tracking? Track-cluster pulls

Merging degrades tracking by pulling clusters away from tracks

Nicola de Biase

- > Merging degrades impact parameter estimation
 - Impacts flavour tagging
- > IP estimation worsens with increasing number of merged clusters

Nicola de Biase

DESY.

>

- Normalised entries 0.22 0.2 **AS** Simulation - Interr $Z' \rightarrow hh$ 0.18 Pixel detector Merged 0.16 0.14 0.12 0. 0.08 0.06 0.04 0.02

Conclusions

- Rate of merging-affected tracks relevant in the ITk >
- Cluster merging relevant for track performance
 - Degrades clustering performances
 - Degrades track parameter estimation
 - d_0 degradation \rightarrow Worse flavour tagging
 - Remaining question:
 - How much room for improvement via splitting?

Backup

Tracking in ATLAS Ambiguity solving

- Cluster classification (Only for clusters on multiple tracks)
 - Evaluate expected number of contributing particles
 - NN with ID, based on MC truth with ITk
- > Cluster correction
 - Correct the cluster position and relative error (Splitting)
 - Machine learning algorithm with ID, not performed with ITk
 - Is splitting needed with the ITk?

Only for Pixel clusters

Tracking in ATLAS General

- > Combine signals in the tracker into clusters and convert them into space-points
 - Clusters interpreted as deposits left by individual particles
- > Create track candidates
 - Combine space-point triplets into track seeds
 - Extend track seeds
- > Ambiguity solving and fitting
 - Reject combinations of unrelated clusters
 - Resolve overlaps between candidates
 - Fit
- > Track selection:
 - Bad tracks rejected via a score (penalising cluster sharing)

Nicola de Biase

Tracking in ATLAS General

- > Form silicon clusters
- > Create track candidates
- > Ambiguity solving and fitting
 - Reject combinations of unrelated clusters
 - Resolve overlaps between candidates
 - Estimate track parameters
- > Track selection:
 - Bad tracks rejected via a score (penalising cluster sharing)