

Dohun Kim

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

DESY.

Testbeam Campaign

- Testbeam
 - To verify the performance of sensors or devices using high energetic particle beam
 - Tracking using beam telescope
 - Enable to distinguish particle and noise
- Why to require high rate beam?
 - A lot of tracks for precise measurement
 - To verify readout performances of sensors with high rate beam
 - E.g. beam monitor, beam counter
 - To irradiate sensors

FIG. 5. Variation of the resistivity as a function of irradiation flux at different electron energies for the irradiated n-type silicon sample.

https://doi.org/10.1063/1.324032

Bulk Damage

- Bulk damage
 - Non Ionizing Energy Loss (NIEL)
 - Hadrons, higher energetic Leptons and gammas
 - Displacement in a pair of a Si interstitial
 - A vacancy in Si-lattice

	Gamma	Electron	Proton	Neutron
Interaction	compton electrons	Coulomb	Coulomb & elastic nuclear	elastic nuclear
Single defects	300 keV	255 keV	185 eV	185 eV
Cluster defects	-	8 MeV	35 keV	35 keV

(mm)

Vacancies distribution after irradiation with number of particle, $\Phi eq = 10^{14} \text{ cm}^{-2}$

[Mika Huhtinen NIMA 491(2002) 194]

Impact of Bulk Damage

- Bulk damage impact on detector
 - Determined by Shockley-Read-Hall statistics

Donor & acceptor generation

- Charged defects
- Change of E-field

Trapping

- Deep defects
- Signal drop

Generation & Recombination

- Current increase
- Cooling helps to reduce

Surface Damage

• Surface damage

- Ionizing Energy Loss (IEL)
- Most sudden generated hole-electron pair in the oxide recombine immediately
- If generated holes remain in the oxide or arrive between Si and oxide, where many deep hole traps exist, they may be kept there permanently
 - Increase of the capacitive coupling between pixels Increase of leakage currents, etc.

Single Event Upset

- Single event upsets
 - Incident charged particles generate charges material via ionization
 - If charged particle penetrates into MOSFET
 - Electric field level could be changed
 - It causes change of bit state
 - Configuration of sensors could be changed
 - Unexpected performances could be conducted
 - E.g. Error of a super mario 64
 - Cosmic ray caused bit-flip

in

https://www.scienceabc.com/innovation/what-are-bit-flips-and-how-are-spacecraft-protected-from-them.html

Motivation of Irradiation Campaign

- A lot of experiments plant to upgrade beam rate
- E.g. HL-LHC upgrade for ATLAS
 - \circ Max. fluence of Layer 1 will be 1.4 x 10¹⁶ n_{ed}/cm²
 - 99% of all hits at a bunch spacing of 25 ns requires a time resolution about 5 ns during experiment
- Additional questions in the irradiation campaign
 - Different effects from the different type of particles
 - Damage function
 - Probability of bit-flips
 - Annealing effects
 - etc.

The DESY II Testbeam Facility

PRIMA at the **R-Weg**

- PRIMary-beam test Area (PRIMA)
- Former transfer beamline from DESY II to DORIS
- Beam is transferred to PETRA or dumped after the 2nd magnet cycle in DESY II
- Feasibility studies in order to test usability as a new test beam line with high rates
- Installation of equipment in 2021

Installed Instrumentation

- Radiation safety calibrations
 - Interlock door is located far from 0 beam dump
 - Heater removes humidity Ο
 - Labyrinth with two walls 0
 - Radiation monitors Ο

Labyrinth

Beam Dump

Radiation monitor

Löwentor

MDI + IT

Racks

Access

Geb 30 (DORIS)

Beam Operation in PRIMA

- # Particles
 - Min. : < $1x10^7$ e / bunch
 - Max. : 3x10¹⁰ e / bunch
- Bunch length < 100 ps
- Energy of beam between 0.45 GeV and 6.3 GeV
 - Current beam with energy of 500 MeV
- Rate of extraction
 - Current : extraction frequency of 6.25 Hz
 - Concerns of stability for extraction frequency of 12.5 Hz

What is Necessary for PRIMA

Simulation

All E: On V

Giant Dipole: off V

Step: 1

- MC framework for the interaction and transport of particles in materials
 - Based on card system originated from punched cards
 - Photon interactions > 100 eV
 - Electron interactions > 1 keV
 - Thermal and high energy neutron interaction
- Using FLUKA
 - Radiation protection to measure dose
 - Magnetic field to study beam stability
 - Radiation damage to estimate irradiation

.....

PHOTONUC

E>0.7GeV: off V

......

FLUKA's physics card

Quasi D: off v

Mat: BLCKHOLE V to Mat: @LASTMAT V

.......

Type: V

∆ resonance: off ▼

Radiation

- Radiation background
 - How many neutrons and gammas
 - Resonance of photonuclear reaction
 - Mostly from beam dump
 - Measurement
 - Radiation monitor : PANDORA
- PANDORA
 - Scintillator
 - Gamma > 50 keV
 - Low energetic neutron < 20 MeV
 - Moderated ³He tube
 - High energetic neutron > 20 MeV

Time structure	Continuous	Burst
Type of radiation	Total response, no pileup	Delayed response only
High energy neutrons > 20 MeV	Scintillator: $H(n,n)H \rightarrow recoil protons$	Scintillator: ${}^{12}C(n,p){}^{12}B \rightarrow {}^{12}C + \beta + \nu$
Low energy neutrons < 20 MeV	Moderated ³ He – tube: 3 He(n,p) 3 T	Moderated ³ He – tube: ³ He(n,p) ³ T delayed by TOF

Table 1 – Overview of the LB 6419 responses due to neutron radiation.

Flange connects beam pipes

Simulated Beam Line

Compare to Doses During Beam Time for 500 MeV

Compare to Doses During Beam Time for 6 GeV

Without beam loss 6.25 Hz, 2x10 ⁹ e / bunch		At the corner	At the Dump
Simulated Dose [µSv/h]	Photon	35 ± 2	3980 ± 30
	Neutron	130 ± 40	6090 ± 210

Dose at Dump with Reduced Beam Rate

500 MeV Electron Beam			
Beam loss of 10% at the flange 6.25 Hz, 1x10 ⁷ e / bunch	Measured dose [µSv/h]	Simulated dose [µSv/h]	
Photon	~30	39.7 ± 0.1	
Neutron	~60	5 ± 0.2	

6 GeV Electron Beam			
Without beam loss 6.25 Hz, 2x10 ⁷ e / bunch	Measured dose [µSv/h]	Simulated dose [µSv/h]	
Photon	~30	39.8 ± 0.3	
Neutron	~60	60.9 ± 2.1	

Beam Stability

- Beam stability
 - Fluctuation of mains frequency causes fluctuation of extraction timing
 - $\circ \quad \Delta t_{\rm ext} \sim \Delta E \sim \Delta \theta$
 - Fluctuation in the beam position
 - Deformation of the beam shape

Correlation between fluctuated Mains Frequency and Doses at Beam Dump for 500 MeV Beam

Error Calculation

Simulation Setup for Magnets

Beam Size for Δf = 0.05 Hz after Kicker Magnet with 500 MeV Beam

Beam Size for Δf = 0.05 Hz after Kicker Magnet with 6 GeV Beam

10-2

10-3

20

Beam Position for Δf = 0.05 Hz after Kicker Magnet

Current beam with energy of 500 MeV measured with beam camera

Beam Size & Position for $\Delta f = 0.05$ Hz after all Magnets

Preliminary Measurement for 6 GeV with Small Rate

- Beam stability using beam with energy of 6 GeV has to be studied more
- Scanning the quadrupole magnets to compare the simulation results
- Implementing a magnet after the dipole magnet into the simulation
- Implementing magnets into the R-Weg geometry

Summary

- Radiation
 - Doses in PRIMA are estimated well
 - Only few of radiation background after beam off
 - Simulation results in an overestimation of photons
 - Ability of PANDORA is saturated
- Magnets
 - The simulation result shows the current beam at PRIMA
 - The beam with energy of 6 GeV could be stable

6 GeV Electron Beam			
Without beam loss 6.25 Hz, 2x10 ⁷ e / bunch	Measured dose [µSv/h]	Simulated dose [µSv/h]	
Photon	~30	39.8 ± 0.3	
Neutron	~60	60.9 ± 2.1	

- MC framework for the interaction and transport of particles in materials
 - Based on Fortran
 - Photo interactions > 100eV
 - Electron interactions > 1 keV
 - Low energy neutron interaction < 20 MeV
- Applications
 - Accelerator design
 - Radiation protection (shielding, activation)
 - Radiation damage or electronics effects
 - etc.

FLUKA

FLUKA

- Input file of FLUKA based on "cards" Ο
 - "Cards" originate from punched cards
 - Choose function cards
 - Geometry, Physics, Scoring, Magnet, etc.
- Possible to link to user defined codes Ο
 - Language : Fortran
- Provides the 3D view of geometry 0

PHOTONUC

Geometry using FLUKA

- Principle of combinatorial Geometry
 - Complex objects are made using boolean operations
 - Possible to modularize the bodies
 - Easier to design complex parts
 - Modules can be transformed easily using cards
 - There are disadvantages
 - It is not easy to convert CAD to FLUKA
 - FLUKA provides simple bodies
 - Planes, boxes, sphere, cylinders, cones ..
- Material cards
 - Material property of bodies are defined using cards
 - density, interaction, ionisation etc.
 - A lot of materials are included in FLUKA already
 - User can define a material too
 - Special material : blackbody
 - all absorbing material
 - The region where is simulated has to be surrounded by blackbody

Compare to Doses During Beam Time

34

Beam Line with Boronated Polyethylene

Beam lost of 10% at the flange		With BE-Plate (B of 1%, thickness of 5cm)
		At the corner
Simulated Dose [µSv/h]	Photon	618 ± 10
	Neutron	520 ± 80
Measured Dose [µSv/h]	Photon	~50
	Neutron	~600

Compared Doses During Cooling Down at the Dump

Beam Size

Beam Position

10.0 38

2.5

5.0

7.5

Preliminary Measurement for 6 GeV without Quadrupole Magnets

