

The "final" mDOM.

Sarah Mechbal for the mDOM team APC meeting - 12.05.2022

The IceCube Upgrade

7 strings - 693 Optical sensors:

- Calibration devices
 - 277 D-Eggs

14 PDOMs

402 mDOMs

Gen1-DOM

Special device

Calibration device

mDOM DEgg

MODq

8 8 8 8 8 9 9 9 9

- renalysis of IceCube data
- IceCube Gen-2 Research & Development effort

Neutrino physics

In the low energy regime

Low energy muon neutrino as seen in DeepCore (Gen-1) and Upgrade

Projected sensitivity to muon neutrino disappearance using the IceCube Upgrade with 3 year of data \Rightarrow very competitive with long baseline neutrino accelerator experiments

Check on the unitarity of the PNMS matrix: are there sterile neutrinos out there? **10% tau neutrino appearance precision achieved in 1 year**, (>3x better than current world-best DeepCore)

mDOM rises Behold!

mDOM design overview

A reminder

The 24 PMT mDOM design is inspired by the multi-PMT (31) approach first taken by the KM3NeT collaboration

The mDOM team

A big German team!

What I had asked as a picture...

mDOM team in September 2021 during mDOM workshop at DESY

A very collaborative work Our DESY team

- Summer Blot: FAT preparation
- Nora Feigl: Testing... testing..
- Timo Karg: in charge of... everything?
- Marko Kossatz: electrical engineer, bubble whisperer
- Sarah Mechbal Testing...1..2...testing
- Matthias Schust: mechanical engineer, mDOM integration
- Kalle Sulanke: Senior electrical engineer, mainboard, ICM, fieldhub design, boat master

Progress and upcoming milestones

Time... it only moves forward...

Bubblegate

A year long problem

Bubbles would appear after degassing and curing of optical gel, and bubbles would grow during freezing, delaminations would appear

Bubbles are not without poetry...

Putting Bubblegate behind us

Resolution

Two changes were done:

- 1. Change design of support structure:
 - Reflectors are now glued to the support structure and no longer held with small clips
 - Switch the 3D printing method, surface is now chemically smoothed and the smoothing of the surface
- 2. Change the potting and degassing procedure during integration
 - Favor a "low pressure approach" where the module is degassed at 2 mbar before the gel is poured and degassed a low pressure

Thanks to the intense efforts from Matthias Schust and Marko Kossatz, the first module integrated with this method resulted in a drastic decrease of bubbles, even after multiple days of freezing!

design a year ago

current design

Integration facility

At Schönefeld

In March 2022, the integration site moved from the DESY campus to a hall near the old Schönefeld airport, where a clean room was installed

Final Design Review

Design Verification Tracker

Integrated mDOM ERD			mDOM HV ERD			mDOM Mainboard ERD			mDOM PMT ERD				
ID	Requirement Name	Resp.	Stat.	ID	Requirement Name	Resp.	Stat.	ID	Requirement Name	Resp.	Stat.	ID	Requirement Name
FR1	Single Photon Detection	Mechbal		IR1	PCB dimensions			FR1	Waveform Capture	Mechbal		ER1	Operation temperature
FR2	All SPE to Surface	Karg		IR2	Communications protocol			FR2	Leading Edge Time Capture	Sulanke+M	lechbal	ER2	Storage Temperature
FR2-A	Maximum Data Rate	Karg	Estimati	IR3	Supply Voltage			FR3	Pulse Extraction	Mechbal		PR1	High Voltage
FR3	Readout Window	Mechbal		PR1	HV Range	Wendt		FR4	Remote Update of Firmware / Software	Karg, Sula	Needs to	PR2	Quantum Efficiency
FR4	Gain Calibration	Mechbal		PR2	Noise on Anode	Schneider		FR5	Per-PMT Scaler	Mechbal		PR3	Pulse Amplitude
FR6	Per-PMT Scaler	Mechbal		PR3	High-Voltage Drift			FR6	Per-PMT Delta-t Distribution	Mechbal		PR4	Transit Time Spread
FR7	Per-PMT Delta-t Distribution	Mechbal		PR4	Linearity	Jonas / Jud	AK: mea	FR7	Hit Buffer	Mechbal	Not sup	PR5	Rise Time
FR8	Hit Buffer	Mechbal	Not sup	PR5	Sag			FR8	Readout Window	Mechbal		PR6	Peak-to-Valley Ratio
FR9	Remote firmware / software updates	Sulanke/K	Needs to	PR6	Minimum PE Rate			PR1	Analog Signal Electronic Noise	Nora		PR7	SPE Resolution
FR10	Unique ID	Kossatz		PR7	Reliability			PR2	Linearity	Nora		PR10	Prepulsing
FR11	In-xDOM Pressure Monitoring	Karg	Used re	FR1	High-Voltage Readback	Wendt		PR3	Waveform Dynamic Range	Nora		PR11	Delayed Pulses
PR1	SPE time resolution	Mechbal		FR2	High-Voltage Setting			PR4	Waveform Pulse Pair Resolution			PR12	Afterpulsing
PR2	Dynamic Range	Feigl	Will be i	FR3	Supply Current on 3.3 V Line			PR5	Discriminator Threshold Range and Resolution	Mechbal		PR13	Dark Rate
PR3	Pulse Pair Resolution	Sulanke		FR4	Supply Current on 1.8 V Line			PR6	Discriminator Threshold Stability	Mechbal	· · · · ·	PR14	Linearity
PR4	Baseline Electronic Noise	Feigl		ER1	Operating Temperature			PR7	Reliability	Karg	HALT pla	IR1	Dimensions
PR5	Reliability	Karg		ER2	Storage Temperature	Jonas / Juo	lith	PR8	Dead Time	Sulanke		IR2	Dimension tolerances
ER1	Pressure Resistance	Kappes	To be re	ER3	Corona Discharge			ER1	Boot Temperature	Blot		IR3	Conductive Coating
ER2	Operation Temperature	Blot		1				ER2	Operating Temperature	Mechbal		IR4	Copper Tape
ER3	Storage Temperature	Blot						ER3	ESD Immunity	Sulanke	ESD test	IR5	Pin Layout
ER4	Thermal Shock	Kappes	To be re	peated	with final, final design						-	IR6	Serial Number
ER5	Mechanical Shock	Schust	To be repeated with final, final design								IR7	Unused flying leads	
ER6	Mechanical Vibrations	Schust	To be re	peated	with final, final design								
	Validated	Test repor	t has bee	en reviev	wed and approved by the mDOM-de	v call							
	Ready for validation	Ready for validation means: design verification testing has been completed. A test report (e				ort (e.g	, presentation) should be linked from	the ERD for	review b	y the m	DOM-dev call		
	In progress	1											
	Not started / unassigned												
	Verification failed		1								i i		

DESY. APC meeting - 12.05.2022

Example of a requirement

SPE Time Resolution

PR1 SPE time resolution

The system shall time stamp the leading edge of an SPE with a precision of not less than 5 ns [TBR] with respect to master clock.

Pulsed Diode Laser

Digital Delay Generator

Example of a requirement

SPE Time Resolution

		The system shall time stamp the leading edge of an SPE
PR1	SPE time resolution	with a precision of not less than 5 ns [TBR] with respect
		to master clock.

We find that the standard deviation of the the transit time is **3.31 ns**, below the 5 ns limit defined by the requirement

Example of a requirement

Linearity measurement

PR2

Linearity

The amplitude of the mean output signal of the system shall be proportional within 10% [TBR] to the amplitude of the input signal up to an input signal charge of 50 p.e.

The linearity of the mDOM is one of its most crucial performance requirements

Environmental requirement

Mechanical, pressure, temperature

Could the mDOM withstand transport, deployment? Will it live a long beautiful life?

Mechanical test: high level land transport

Thermal shock test

Pressure test

FAT: Final Acceptance Testing

Dark Freezer Lab

Month-long test where the 20-30 mDOMs will undergo temperature cycling whilst most important detector characteristics are being tested

Inside the DFL: work mode

Inside the DFL: party mode

Optical FAT

Long term testing

In late April, the optical FAT setup, developed at FAU Erlangen, was installed at DESY: it consists of a laser + filter wheel + collimator + diffusor system and 24 fibers that are placed directly onto the center of each PMT in a holding structure

Summary and prospects

Though the future remains unknown

- Though the statistic is low the team is confident about having identified the root of the *bubble trouble*, and how to mitigate it
- Forward we move! mDOM production is about to start. Delays are caused by supply chain issues in electronic parts procurement
- The Dark Freezer Lab is ready to welcome its first batch of mDOM for FAT testing: hardware and software support have been developed
 ⇒ We shall learn how to run a month-long series of test in a robustly automated manner

The end

Strings layout

PNMS matrix

The PMNS mixing matrix

A lexicon

A guide to mDOM-speak

- **DVT:** Design Verification Testing, the checking of all the predetermined physics and engineering requirements for the detector
- **FDR:** Final Design Review, internal review to approve the final mDOM design
- **FAT:** Final Acceptance Testing, the month-long test each module will undergo in the DFL and in the optical setup before being shipped away
- **DFL:** Dark Freezer Lab, the freezer container you may or may not have noticed sitting next to the IceCube Lab
- Mini-fieldhub: Interface device between devices and computer
- Bubble-gate: A bad thing that happened

Organization of the package

Behold the power of organigrammes

T-mDOM/tmdomconfig T-mDOM/mDOM/util T-mDOM (Testing-mDOM) python package The basic idea behind T-mDOM is to be able to run .ison The central configuration file for a a set of X tests on Z modules by just running a given setup, connected Run script initializes all mDOMs modules and fieldhubs. single line: included in tmdomconfig.json and database credentials. database interface.pv: calls on the tests included in the sw and fw versions to python3 run test.py mDOM find calibrated values . Query all information chosen setsuite upload about a module (and any subdevice), and subsequent inserted results T-mDOM/setconfig T-mDOM/mDOM/mDOM class.pv: pushes results into The argument of the the single mDOM object is the central fatcat db via an control script: a .ison structure of T-mDOM, the object Built following the model of Inserter class dictionary listing the includes class instances of iceboot, the tests to be run for a fieldhub, a database interface STF specific test suite fieldhub.py Interfaces with all An important aspect is the wirepairs of a MEH via T-mDOM/testconfig: icm.py storage/guery of test results Launches a domnet T-mDOM/tests: Every test script needs to session via have a .json configuration ⇒ every single test result is stored in a json dictionary and in the fatcat db domnet launcher.pv file with the can be pushed into the database Calls RapCal arguments/test validators Now includes basic Measurement/monitoring script to it Calibration scripts: measure agin at target hy. find spe level flashers.py interfacing with the Dark py find target hv.py Misc. utilities include, among measure disc threshold.py find disc threshold level.py measure darknoise.pv Freezer I ab other things **Plotting class** modem for FAT plotting.py Logging class logging setup.py with Multiple DVT tests are Dark Freezer Lab (DFL) interfacing to slack PYTHON MODULES USED interface T-mDOM/DFL: A timer instance already included in the timer.pv can set and get freezer Math functions class package temperatures via the math functions.py selenium python package and a chrome driver STM32Tools fh_server pmt_taco fatcat db

<u>Click here</u> for the interactive version of the diagram

Environmental requirements

mDOM torments

ER1	Pressure Resistance	The system must withstand external pressures of 10 000 psi.	During deployment of IceCube DOMs pressure peaks up to 8 000 psi were measured. Requirement for IceCube DOMs was 10 000 psi and there has been no indication for destruction of modules.		
ER2	Operation Temperature	The system must operate normally when exposed to an external temperature ranging from -40°C to +25°C.	The system must operate normally after deployment in the deep ice at Pole, but also in the lab at room temperature during development and testing. The design shall be verified to work properly down to at least -45°C. Due to the availability of suitable freezers, Final Acceptance Testing at -40°C is acceptable.		
ER3	Storage Temperature	The system must survive storage temperatures between –40°C [TBR] and 50°C [TBR].	Temperature range must cover all temperatures encountered during transport by vessel and storage in Antarctica.		
ER4	Thermal Shock	The system must be able to survive thermal stress of sudden transition from $-40^{\circ}C \pm 5^{\circ}C$ air to $+20^{\circ}C \pm 5^{\circ}C$ liquid bath.	During deployment, the cold DOMs are immersed into the hole water column.		
ER5	Mechanical Shock	The system must be able to survive ground and air transportation shock levels	Partially allocated to the transport container, the overall solution for handling and shipment of integrated DOMs must be sufficient to preclude losses.		
ER6	Mechanical Vibrations	The system must be able to survive ground and air transportation vibration levels.			

Linearity measurement setup

Light Tight Box

• PMT connected to channel 0 and reference PMT

PMT

LED and digitizer (external data acquisition) connected to pulse generator

LED

Light measurement setup

Light Tight Box

idea: use large area (IceCube Gen1 PMT) to calibrate light field, then replace PMT with integrated mDOM and analyze its response

reference measurement:

 IceCube PMT in box with previously used LED (connected to previously used pulse generator). Data acquisition with digitizer mDOM measurement

- measurement with all 24 channels
- trigger: discriminator

Bubbles I

potting and degassing (3) modules DVT01-DVT07

- used to do potting @atmosphere pressure with static mixer between support structure and glass vessel
- entire gel has been filled up from almost pole region

- potting in two different steps / degassing in between and afterwards
- bubbles where formed @pole and equator PMTs after curing / preferably on the side where gel was injected
- history of bubble formation

DESY. | FDR | mDOM-production | Matthias Schust, 11.-13.04.2022

Page 7

home

Bubbles II

potting and degassing (4) module DVT08: vacuum approach

- current procedure: degas setup for two days before potting (down to 2mbar)
- static mixer ends at a tube, which is going through a flange into the module
- · potting: raise pressure up to 200mbar; fill in almost the entire gel; start degassing
- second shot: from the top (no mixing between degassed and non-degassed gel)
- result after curing: much less bubbles and particular @pole no more bubbles

some critical remarks:

- · vacuum approach slows down the productivity
- low statistics don't know exactly whether it helps to prevent bubble formation at all, but the latest module show that we now understand much better where the bubbles come from
- quality: still foam spilling into the module "dams" at pole were increased and there are new pools at the end of the degassing channels

potting (p) / degassing (d)	pressure (mbar)	time			
d (module without gel)	2.1	2 days			
р	200	until module is almost full – 1cm below end of glass vessel; \approx 30min			
wait	atm	1,5h			
d	25	60 min			
d	5	60 min			
wait	atm	60 min			
р	atm	last shot until gel level is filled up			
d	100	10 min			
curing	atm	3 days			

DESY. | FDR | mDOM-production | Matthias Schust, 11.-13.04.2022