Detector Physics I

http://atlas.ch

Particle Detection in High Energy Physics

Simon Spannagel, DESY

Introduction to the Terascale 06 March 2023

Table of Contents

- What do we measure?
 - Stable Particles
 - Measurement of Particle Properties
 - Detector Systems
- Interaction with Matter
 - Charged Particles
 - Photons
 - Hadronic Interaction
 - Neutrinos

- Detector Types
 - Historical Overview
 - Gaseous Detectors
 - Semiconductor Detectors
 - Scintillators
 - Calorimeters
 - Cherenkov Detectors
- Detector Systems at the LHC Experiments

Prologue: Units

- Elementary charge: e = 1.602 176 6208 x 10⁻¹⁹ C
- Energy unit eV: 1 eV = 1.602 176 6208 x 10⁻¹⁹ J (CV)
 Energy of an electron, accelerated through 1V
- Electron mass: $m_e = 9.1 \times 10^{-31} \text{ kg}$ = 511 keV / c²
- Factor c² often dropped, units defined with c = 1 (and h = 1): MeV, GeV, TeV... for energy, momentum, (rest-) mass
- Scientific notation: Mantissa plus exponent to Base 10: $a \times 10^{b}$

What do we measure?

Determination of particle properties

Many elementary particles have very short life time (Higgs, W, Z...)

- Measuring their decay products
- Particles have to interact with detector material!
 - Not every particle participates in every force
 - Possibilities of detection depends strongly on forces
- Elementary particles: $e^{\pm}, \mu^{\pm}, \nu^{e}, \overline{\nu}^{e}, \nu^{\mu}, \overline{\nu}^{\mu}, \nu^{\tau}, \overline{\nu}^{\tau}, \gamma$

Particles have to be long-lived enough to reach the detectors...

• Mesons: $\pi^{\pm}, K^{\pm}, K_0 (K_0^{S}, K_0^{L})$

Which particles can we measure?

$$d = c \tau \gamma, \quad \gamma = \frac{1}{\sqrt{(1-\beta^2)}}, \quad \beta = \frac{v}{c}$$

$$au_n \approx 15 \, min$$

 $au_\mu \approx 2 \cdot 10^{-6} \, s$

•

Observables

- Momentum p
- Velocity **v** Time of flight, RICH, etc.
- Charge **Q** Bending radius in magnetic field
- Lifetime **τ** Measurement of decay length
- Energy E Absorption in calorimeters
- Rest mass **m** Indirect measurement e.g. from momentum
 and energy or velocity

Bending radius of track in magnetic field

$$E^{2} = m^{2}c^{4} + p^{2}c^{2}$$
 $p = \gamma mv = \frac{mv}{\sqrt{(1-v^{2}/c^{2})}}$

Typical Design of an Experiment

- Combination of complementary detection methods •
- Measurement of individual particle properties by • separate detectors interaction
- Order is important! • Some measurements are "destructive"
- Design of many • experiments is very similar

muon detector

Detector Terminology

• Dead time:

Time period immediately after the detection of a particle during which the detector is not yet ready again to detect another particle.

- Non-paralyzable detector: newly occurring event does nothing
- Paralyzable detector: newly occurring event extends dead time
- Resolution:

Achievable uncertainty on the observable

• Efficiency:

Number of recorded/detected events divided by number of events that occurred

Interaction of Radiation with Matter Energy loss and interaction processes

Interaction with Matter

- High energy particles interact via different processes with matter, depending on
 - Particle type
 - Energy
 - Material
- Energy loss of the particles via interaction
 - Energy transfer to material or other (free) particles
 - In Detectors: *Energy loss = signal!*

Charged Particles

Mean Energy Loss

- Charged particles interact with • electrons in matter
- For heavy charged particles • **Bethe-Formula**

$$-\left\langle \frac{dE}{dx}\right\rangle \approx K q^2 \frac{1}{\beta^2} \frac{Z}{A} \left[\ln\left(\frac{2m_e c^2}{I}\beta^2 \gamma^2\right) - \beta^2 \right]$$

- Energy loss depends on •
 - Properties of projectile: charge, energy
 - Target properties: atomic number, ionization energy, density

Without δ

10⁵

10

(TeV/c)

 10^{6}

100

 10^{4}

1000

100

u⁺ on Cu

effects

100

10

(GeV/c) Muon momentum

Bethe-Bloch

Minimum

ionization

100

10

βγ

-dE/dx (MeV cm²/g) ___

ard

0.001

0.1

Nuclear losses

0.01

0.1

10

(MeV/c)

Anderson

Ziegler

Mean Energy Loss

- Different components are dominating:
 - At low energies: $\sim 1/\beta^2$
 - At high energies: ~ ln γ

$$-\left\langle \frac{dE}{dx} \right\rangle \approx K q^2 \frac{1}{\beta^2} \frac{Z}{A} \left[\ln\left(\frac{2m_e c^2}{I}\beta^2 \gamma^2\right) - \beta^2 \right]$$

- Minimal energy loss for ~ βγ = 3
 MIP: Minimum Ionizing Particle
- $[dx] = g / cm^2 = cm x g / cm^3$

Fluctuations in Energy Loss

- Actual energy loss fluctuates around mean value
- Landau-Vavilov distribution with long tails to high energies
 - Most probable value << mean value

- Orbital electrons can receive very large energy transfers
 - Creation of delta electrons
 - Delta electrons have enough energy for further ionization

14

nergy electrons or muons

Low energy electrons

∆ ray

Proton with « delta ray » (electrons)

Particle Trajectories in Cloud Chamber Phywe Cloud Chamber on the Pic du Midi

Alpha

Exception: Electron & Positron

 Special case: low mass m_e = 0.511 MeV / c² m_µ = 106 MeV / c² ≈ 200 m_e

 $E_1 = \vec{p}_1^2 / 2m_e$

- At high energies: Bremsstrahlung
 - occurs when the momentum of a charged particle changes, e.g.
 ...in the Coulomb field of a nucleus
 ...in the magnetic field: synchrotron radiation
 - Here: particles slowed down in matter
 - Relevant for electrons:

 $-\frac{dE}{dx} \sim E \cdot \frac{1}{m^2}$

 $E_2 = \vec{p}_2^2 / 2m_e$

Cherenkov Radiation

Is emitted, when particle velocity > speed of light •

n: refractive index of medium

Electromagnetic shockwave with • conical shape is emitted under angle θ :

$$\cos(\theta) = \frac{1}{\beta n}, \qquad \beta = \frac{v}{c}$$

Very low energy loss (ca. 1% of total energy loss) •

Cherenkov Radiation of a Nuclear Reactor Advanced Test Reactor, INL

Photons

- Electromagnetic interaction
- Different processes dominate, depending on the photon energy:
 - Photo(electric) effect
 - Rayleigh scattering
 - Compton effect
 - Pair production

Photoelectric Effect

- Theoretical description of photo effect:
- Photon is absorbed by electron in atomic shell
- Transferred energy releases/frees electron

 γ + Atom = e^- + Ion

- Process only possible in the field of the nucleus:
 - Momentum conservation
 - Nucleus absorbs recoil
- Cross section of the photoelectric effect shows shell structure of the atom

Compton Effect

• Describes scattering of photon on "quasi-free" electron

 γ + Atom = γ + e^- + Ion

• Photon is deflected from its original path

 Wavelength of photon changes through energy transfer to electron

Photons: Thomson/Rayleigh Scattering

- Elastic scattering: almost no energy transfer to material
- Thomson scattering: Photon scattering on free electron
 - Low-energy limit of Compton scattering
- Rayleigh scattering: Photon scattering off an entire atom
 - Scattering cross section $\sigma_{Rayleigh} \sim f^4$
- Reason for blue / red coloration of the sky depending on the zenith angle
 - Noon: short path through atmosphere, hardly any blue light scattered
 - Morning/evening: long path through atmosphere, much blue light scattered

Photons: Pair Production

- Pair production is the generation of an electron-positron pair by the photon
- Pair production occurs in the field of a partner, which absorbs the recoil (atomic nucleus, but also shell electron)

$$\gamma + p = e^+ + e^- + p$$

• Photon must provide at least rest mass of e+e- pair plus recoil energy:

$$E_{\gamma} \geq 2m_e c^2 (1+\frac{m_e}{M})$$

Recoil energy can often be neglected, e.g. Ge detector: $\frac{m_e}{M} \approx 7.6 \cdot 10^{-6}$

Ivan Baev, CC BY-SA 3.0

Hadronic Interaction

- Interactions of hadrons with nuclei
- Based on the strong interaction, QCD
 - Low range
 - Low probability of hadronic reactions
 - Neutrons can only interact strongly: very penetrating
- Many possible processes (energy dependent)

Elastic, inelastic scattering; neutron capture; reactions with radiation of charged particles; nuclear fission.

Interaction of Neutrinos

- Neutrinos are exclusively subject to the weak interaction
- Possible Interactions

 $\overline{v}_{l} + p \rightarrow n + l^{+}$ $v_{l} + n \rightarrow p + l^{-}$

- Neutrino interactions have very (very!) low cross sections
- Detection of neutrinos requires
 - Very large detector and high neutrino fluxes (direct detection) or
 - Hermetic detector for measurement of missing energy (indirect evidence)

CMS Experiment at the LHC, CERN Data recorded: 2016-Nov-19 01:31:00.355584 GMT Run / Event / LS: 285517 / 956100501 / 652

> **Missing Transverse Energy** Detection of Neutrinos

Particle Detectors

Historic Overview

Geiger-Müller Counter

"Click"

- = Particle passing
- "Many Click" = Many particles
- "A Great Many Click" = Run…!

- Detector filled with noble gas
 - Charged particles ionize noble gas atoms
 - High voltage applied between electrodes amplifies
- Signal: Current pulse to loudspeaker: Click!

06/03/2023

+7 kV ح

Spark Chamber

- "Many Geiger counters"
- Transparent chamber filled with inert gas and many parallel plates
 - Voltage (~ kV) between plates
 - Particles ionize noble gas atoms
 - Small sparks along the particle track
- Analysis by photos or microphones
- Relatively large dead time: quenching time of the avalanche
- Used during the 1930s-1960s

Spark Chamber Melvin Schwartz at BNL AGS

06/03/2023

ß

Cloud Chamber

- Optical detection of charged particles
 - Transparent chamber with supersaturated air-alcohol mixture
 - High-energy charged particle generates ions by impact ionization
 - Ions act as condensation nuclei, droplet formation in the gas mixture
- Type of traces can (sometimes) be identified & assigned to particles
- Nobel Prize 1927 for Charles Thomson Rees Wilson

Cloud Chamber Image Rendering of particle interaction

Donald Arthur Glaser

Detail of droplets Cloud chamber tracks after Radon injection

Simon Spannagel - Introduction to the Terascale - Detector Physics I

Photo emulsion / Nuclear emulsion

- Photographic plate with thick sensitive layer and very uniform grain size.
 - Ionizing radiation leaves traces
 - Development of the plate
 - Trajectories of particles (blackened by silver) visible with microscope

- Nobel Prize 1950 for Cecil Powell
- OPERA experiment in Gran Sasso
 - Photoemulsion plates for particle reconstruction
 - AgBr emulsion, cooperation with Fuji Film: 9 million films, each about 10 x 12 cm

06/03/2023

Annihilation star in photo emulsion Bevatron, Berkeley pion antiproton proton pior $100 \, \mu m$

O Chamberlain et al. 1956 Nuo. Cim. 3 447

Bubble Chamber

- Optically transparent chamber filled e.g. with liquid hydrogen
 - Temperature of the liquid close to the boiling point
 - Reduction of chamber pressure with piston
 - Temperature of liquid is now above boiling point
 - Charged particles generate ions along track
 - Ions serve as nuclei for gas bubbles
- Analysis of photos of the traces

• Nobel Prize 1960 for Donald A. Glaser

Prominent Bubble Chambers

- Most important particle detector type in the 1970s
- Particle source: proton synchrotron

- Gargamelle 1970-1978
 - 4.8 m x 1.88 m, 12 000 l
 - First detection of the Z boson
- **BEBC** 1971-1984
 - Big European Bubble Chamber
 - 3.5 T magnetic field of superconducting coils
 - Discovery of the D meson

Bubble Chamber Image Big European Bubble Chamber @ CERN

Problems of Early Particle Detectors

- Many based on photographic images
 - Data evaluation complex and only possible by hand
 - Limitation of the amount of data
- Long detector dead times
 - No further measurement possible until gas avalanche has been quenched/bubbles have disappeared
 - Only low particle rates possible
- Only little information in measurement
 - Information about particle location (& momentum), but no energy/time measurement

Weizmann Institute Archives

Gaseous Detectors

Primary & secondary ionization of gas atoms

06/03/2023

Gaseous Detectors: Operating Principle

- **Primary signal:** charged particle generates electron-ion pairs by ionization
 - Noble gases: relatively low ionization energy
 - Average energy to generate a pair ~30 eV
 - Number proportional to deposited energy
- Amplification: different working ranges depending on applied voltage
 - Medium voltages: proportional amplification
 - High voltages: Avalanche formation due to secondary ionizations

Proportional Counter

- Very similar to the Geiger counter: anode in the form of thin wire
- High field near wire leads to electron multiplication / signal amplification
- Choice of voltage: proportional range
 - Output signal proportional to original number of ionizations

Simon Spannagel - Introduction to the Terascale - Detector Physics I

Multi Wire Proportional Chamber (MWPC)

- Essentially many proportional counters next to each other, without separating walls
- Wires spaced a few millimeters apart
 - Good spatial resolution of a traversing particle
 - Large areas possible
 - Electronic selection
- High rates possible: 1000 particles/s for comparison, bubble chamber: 1-2 particles/s

• Nobel Prize 1992 for Georges Charpak

06/03/2023

Micropattern Gas Detectors

- Replacement of fragile wires by micro structures
- Potentially better spatial resolution and applicable for higher particle rate

Gas Electron Multiplier (GEM)

- Perforated, metallized Kapton foil, High voltage between electrodes
- Strong dipole field in perforation holes: Gas amplification

Micro-Mesh Gas Detectors (Micromegas)

- Metallic micro-grid
- Electron avalanche evolution near the lattice: Gas amplification

Large gas detector system

- Ionization along the particle track
 - Electrons and ions drifting in the E-field
 - Segmented anode: 2D information
 - Measurement of drift time:
 3D information
- Readout at anode side e.g. via multi-wire proportional chamber, GEMs, ...

•

Time Projection Chambers (TPC)

field cage

incident particle

Simon Spannagel - Introduction to the Terascale - Detector Physics I

Summary

- Particle detection
 - Measurement is performed by interaction of the particle to be measured with detector material
 - There is no single detector concept that can detect all particle types / properties
 - One needs several detector technologies and concepts
- Interaction of radiation and matter
 - Ionization and excitation of detector atoms, Bremsstrahlung, Cherenkov radiation
 - Photoelectric effect, Compton effect, pair production,
 - Hadronic interaction, missing energy, ...

- Historical detectors
 - Cloud chamber, photo emulsion, bubble chamber, spark chamber
- Gas detectors
 - Operating principle
 - Proportional counters, multi-wire proportional chamber
 - Micropattern gas detectors
 - Time Projection Chamber

Simon Spannagel - Introduction to the Terascale - Detector Physics I

