Statistical Methods in Data Analysis:

Machine Learhing:

Andreas B. Meyer DESY
6-10 March 2023

Pixels from Image

Menu

Multivariate Analysis

Tuesday

- Statistical and Systematic Uncertainties
- Probability
- Parameter Estimation

$-\quad-\quad$					
Scale and thickness	6	6	6	6	6
Localized part	6	6	6	6	6
Stroke thickness	5	5	5	5	5
Localized skew	4	4	4	4	4
Width and translation	5	5	3	3	3
Localized part	2	2	2	2	2

Wednesday

- Hypothesis Testing
- Confidence Intervals
- Profile Likelihood Ratio

Friday

- Classification
- Multivariate Analysis
- Machine Learning

Classification, Multivariate Analysis, Machine-Learning

Sources and Papers

Statistical Methods in Data Analysis", Terascale, March 2023: https://www.desy.de/~ameyer/da desy23/

A.B.Meyer

- Statistical Methods in Data Analysis", KSETA lecture, Feb 2022: https://www.desy.de/~ameyer/da kseta 22/
- Statistical Methods in Data Analysis", KSETA lecture, March 2021: https://www.desy.de/~ameyer/da kseta 21/
- "Moderne Methoden der Datenanalyse", Course lecture at KIT, SoSe 2017, slides (in German): http:// ekpwww.etp.kit.edu/~ameyer/da_sose17/index.html Access to slides and material: (user: Students. pw: only)

Papers and Articles:

© Robert Cousins: "Why isn’t every physicist a Bayesian ?", Am.J.Phys. 65 (1995).

- Robert Cousins: "Lectures on Statistics in Theory: Prelude to Statistics in Practice" [arXiv]
© G.Cowan, Particle Data Group [pdg] 2020, chapter 40 [pdf] or full PDG book for download (80MB) [pdf]
© G.Cowan, K.Cranmer, E.Gross, O.Vitells: "Asymptotic formulae for likelihood-based tests of new physics" [arXiv]
- ATLAS and CMS Collaborations: "Procedure for the LHC Higgs boson search combination" [CDS]
- T.Junk: "Confidence level computation for combining searches with small statistics", NIM, A 434 (1999) 435-443
- A.Read: "Presentation of search results: the CL_{s} technique", J.Phys.G: 28 (2002)

Many thanks for discussions, material and help go to:

- G. Quast (KIT), R. Wolf (KIT), O. Behnke (DESY), C. Autermann (Aachen), Th. Keck (KIT), Jan Kieseler (CERN)

Recap

Hypothesis Testing

Procedure

1. Determine PDF $g\left(t ; \mathrm{H}_{\mathrm{i}}\right)$ for test statistic t
2. Define significance level α (typically 5%)

- critical value to: reject null hypothesis or not
- in practice, α depends on goal
- high efficiency ε or high purity p ?

$$
\epsilon=1-\alpha \quad p=\frac{(1-\alpha) N_{0}}{(1-\alpha) N_{0}+\beta N_{1}}
$$

- separation power $1-\beta \quad$ Note: trivially, no separation if no separation power $=>$ large $1-\beta$ is fundamentally more important than small α

3. Determine p-value of the measurement p-value is probability that values $t>t_{0}$ are measured, assuming that H_{0} is true. (note: p-value is an estimator derived from the measurement, i.e. a random number)

Example: Spin correlations of top-quark pairs

- New Physics could change relative topquark spins \rightarrow angular distributions
- H_{0} : spin-correlation follows Standard Model (Spin 1/2 particle)
- H_{1} : no spin correlation
- Construction of the test statistic \rightarrow log-likelihood-difference
- Sample likelihoods from pseudoexperiments for H_{0} and H_{1}
- Statistical uncertainties ~ Gaussian shape \rightarrow central limit theorem

Example: Spin correlations of top-quark pairs

- New Physics could change relative topquark spins \rightarrow angular distributions
- H_{0} : spin-correlation follows Standard Model (Spin 1/2 particle)
- H_{1} : no spin correlation
- Construction of the test statistic \rightarrow log-likelihood-difference
- Sample likelihoods from pseudoexperiments for H_{0} and H_{1}
- Statistical uncertainties ~ Gaussian shape \rightarrow central limit theorem
- In addition, systematic uncertainties \rightarrow wider PDF, no longer Gaussian

Example: Spin correlations of top-quark pairs

- New Physics could change relative topquark spins \rightarrow angular distributions
- H_{0} : spin-correlation follows Standard Model (Spin 1/2 particle)
- H_{1} : no spin correlation
- Construction of the test statistic \rightarrow log-likelihood-difference
- Sample likelihoods from pseudoexperiments for H_{0} and H_{1}
- Insert data \rightarrow result:
- 2.2б (p-value 1.3\%) consistent with standard model $\left(\mathrm{H}_{0}\right)$
- 2.9б (p-value 0.2\%) for "uncorrelated" $\left(\mathrm{H}_{1}\right)$

Classification

Classification

Outline

- Linear discriminators
- Supervised learning
- Boosted decision trees
- Artificial neural networks
- Deep-Learning

Fisher, R. A. (1936), The use of multiple measurements in taxonomic problems, Annals of Eugenics, 7: 179-188. doi:10.1111/j.1469-1809.1936.tb02137.x

Multivariate Analysis

- Assign a given event x to a class
- Random event is described by feature vector $\mathrm{x}_{1}, \ldots \mathrm{x}_{\mathrm{n}}$
- Class k is defined by PDF $f_{k}\left(x_{1}, \ldots x_{n}\right)$

Does this event belong to Class 0 or Class 1 ?

What is a good test statistic?

Multivariate Analysis

- Test of hypothesis H :

- Determine PDF $\mathrm{g}(\mathrm{t} \mid \mathrm{H})$ of the test statistic $\mathrm{t}(\mathbf{x})$ for the hypothesis H
- Particle physics: in most cases use Monte Carlo to determine $\mathrm{g}(\mathrm{t} \mid \mathrm{H})$
- Multivariate analysis (MVA):
- Combine many observables into one (or several) test statistics $\mathrm{t}_{\mathrm{i}}(\mathbf{x})$
- Take correlations between feature vector components $\mathrm{x}_{1} \ldots$ n into account

Multivariate Analysis

- Simultaneous test of several composite hypotheses $\mathrm{H}_{\mathrm{i}}(\theta)$

- Determine PDF $\vec{g}\left(\mathbf{t} \mid \mathrm{H}_{\mathrm{i}}(\theta)\right)$ of the test statistics $\mathrm{t}_{\mathrm{i}}(\mathbf{x})$ for multiple hypotheses H_{i}
- Particle physics: in most cases use Monte Carlo to determine $\vec{g}\left(\mathbf{t} \mid \mathrm{H}_{\mathrm{i}}(\theta)\right.$)
- Multivariate analysis (MVA):
- Combine many observables into one (or several) test statistics $\mathrm{t}_{\mathrm{i}}(\mathbf{x})$
- Take correlations between feature vector components $\mathrm{x}_{1 \ldots \ldots \mathrm{n}}$ into account
- Classification assigns a discrete label. In regression, a continuous quantity, $g=g(t \mid \theta)$, is determined

Curse of Dimensionality

Feature space with many dimensions

- Density distribution (PDF)

Curse of Dimensionality

Feature space with many dimensions

- Density distribution (PDF)
- a d-dimensional histogram (with N entries and n_{b} bins/dim.) is essentially empty

$$
\frac{N}{n_{b}^{d}} \rightarrow 0, \text { for } d \rightarrow \infty
$$

- Constant density: need n^{d} evts
- In n-dimensions:

PDF usually not very well known

Classifier

Test Statistic

- Linear approaches can be treated analytically
- e.g. Fisher discriminant
- Many classification problems can be linearised by variable transformation (with or w/o approximation)
- Non-linear methods:
- analytic approach usually impossible
- use algorithmic approach to determine optimal test statistic, e.g. machine learning

Linear Discriminators

Hypothesis test by linear discriminant analysis

- Determine test statistic $t(\overrightarrow{\mathrm{x}})$ that provides best possible separation between signal and background

Linear Discriminators

Hypothesis test by linear discriminant analysis

- Determine test statistic $t(\overrightarrow{\mathrm{x}})$ that provides best possible separation between signal and background.
- In other words: choose coordinate and parameters such that distributions are optimally separated

Decorrelating parameters: cf previous lecture p47-49

Elements of Statistical Learning (2nd Ed.), © Hastie, Tibshirani \& Friedman 2009

Fisher Discriminant

- Ansatz: linear test statistic $t(\vec{x})=\sum_{i=1}^{n} a_{i} x_{i}=\vec{a}^{T} \vec{x}$
- Choice of parameters: optimal separation when
- the difference between the means $\left|\tau_{s}-\tau_{b}\right|$ is large
- the sum of variances $\Sigma_{s}^{2}+\Sigma_{b}^{2}$ is small
- Fisher discriminant:
- maximize objective function

$$
J(\vec{a})=\frac{\left(\tau_{s}-\tau_{b}\right)^{2}}{\Sigma_{s}^{2}+\Sigma_{b}^{2}}
$$

- determine Fisher coefficients such that $\vec{\nabla} J(\vec{a})=0$
- For linear problems, Fisher is equivalent to likelihood ratio (optimal test statistic) => backup

Fisher Discriminant

Example

- 10000 Signal and background events: shifted Gaussian distributions, correlated between x and y

Fisher discriminant takes correlation into account

Fisher Discriminant

Example

- 10000 Signal and background events: shifted Gaussian distributions, correlated between x and y

For this linear problem, Fisher discriminant provides optimal separation

Fisher Discriminant

Example

- 10000 Signal and background events: non-linear problem: shifted smeared circles

For this non-linear problem, Fisher discriminant is significantly worse than more complex methods

Machine Learning

Machine Learning

- Supervised Learning:
- Pre-classified, "labelled" data (or MC) for signal and background. x_{j}
- During the training all inputs and output distributions are available.
- Training: minimize loss function $E\left(\left\|t_{i}-t_{\text {true }}\right\|\right)$, i.e. difference between truth and result.
- Un-supervised Learning:
- No labelled data or simulation
- Recognition of (unknown) signal, patterns or anomalies
- Examples: Principle Component Analysis, Autoencoders
- Reinforcement Learning
- No labelled data or simulation
- Optimize expected reward described by loss function

Paper explained: https://www.youtube.com/watch?v=rFwQDDbYTm4

Autoencoder: target $\tilde{x}_{i}=x_{i}$

Supervised Learning

Training

- Use labelled training data to determine optimal test statistic

- Overtraining \rightarrow generalisation loss: machine learns statistical fluctuations and not the concept
- Many input variables \rightarrow curse of dimensionality \rightarrow optimal choice of dimensions for a given problem, depending on available (labelled) data

Supervised Learning

Training and Testing

- Use statistically independent (labelled) dataset to test the trained algorithm

© Lower complexity (few parameters or training cycles) \rightarrow worse separation (bias), lower variance
- Higher complexity \rightarrow lower bias, but: overtraining \rightarrow higher variance \rightarrow bigger "generalization error"

Supervised Learning

Testing

- Use statistically independent (labelled) dataset to test the trained algorithm

- Kolmogorov-Smirnov (goodness-of-fit) test: maximum difference of the cumulative PDF

Multivariate Analysis Toolkit of Root

- Breakthrough in use of ML in particle physics (since 2005)
- Rich set of standardized diagnostic histograms
- Direct comparisons and "hyper-parameter optimisation"

Input distributions

correlations ${ }^{\text {in }}$

Large Variety of MVA Algorithms

Taken from: http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

Summary: Supervised Learning

- Preparation:
- Choose simplest method that provides (close to) optimal solution (linear / non-linear)
- Keep dimensionality minimal
- Identify n optimal features
- Remove strongly correlated inputs
- Training and testing:
- Test generalisation properties: "trade-off between bias vs variance", in English: avoid overtraining
- Scan hyperparameters to ensure result is stable and close to optimal

- Application:

- Calculate event-by-event discriminator, i.e. scalar test statistic $t(x)$

Boosted Decision Trees

Decision Tree

- Sequential („<" or „>") decisions in single observables: - cutting the feature space into (hyper-)squares
- Decision tree:
- decisions = branches,
- end nodes = leaves
- Features:
- Robust against outliers and normalisation
- Features can be used several times ("greedy algorithm")
- Training is usually fast (in comparison to ANN)

Decision Tree

Training: Growing the Tree

- Take most significant feature of the training dataset to separate events into two branches
- Fake rate: $F=1-\max (p, 1-p)$
- Gini index: $G=2 p(1-p)$
- "Cross entropy $S "=-(p \ln (p)+(1-p) \ln (1-p))$

Decision criteria

$$
p=\frac{n_{s}}{n_{s}+n_{b}}
$$

© "Greedy Algorithm": sequentially repeat until stopping criterion

- maximal number of leaves
- minimal number of events
- target purity

Stopping criteria

Decision Trees

Training: Growing the Tree

Forest of Decision Trees

Ensemble of Weak Learners

- "Weak Learner": a single tree generally provides poor generalisation to other data (same PDF)
- A forest (≥ 1000 trees) can be very powerful: robust separation by majority vote of many trees, each of which has a poor separation ("ensemble method")
- Further improvements:
- Random Forest: each tree is built from random subsets of observables
- Bagging: subset of the test dataset are used to generate the decision tree.
- Boosting: increase weights of wrongly classified events

Forest of Decision Trees

https://paulvanderlaken.com/2020/01/20/animated-machine-learning-classifiers/
Ensemble of Weak Learners

AdaBoost

"Adaptive Boosting"

- Observables with relevant information are considered more
- Assign increased weights to wrongly classified events for subsequent weak learners
- Calculate weight α_{i} from fake rate erri-1 of the previous tree

$$
\alpha=\frac{1-\mathrm{err}}{\mathrm{err}}
$$

- Boosted classification:

$$
y_{\text {Boost }}(\mathbf{x})=\frac{1}{N_{\text {collection }}} \cdot \sum_{i}^{N_{\text {collection }}} \ln \left(\alpha_{i}\right) \cdot h_{i}(\mathbf{x})
$$

Where $h_{i}(x): 1(-1)$ for signal(background) and $N_{\text {collection: }}$ number of trees

- Adjust boost strength through additional hyperparameter β, i.e $\alpha \rightarrow \alpha^{\beta}$

AdaBoost

Example

- AdaBoost, NTrees=500, MinNodeSize=0.5, AdaBoostBeta=0.5, MaxDepth=3, nCuts $=20$, SeparationType=Ginilndex, 10000 events
- Training: 2s, testing: 0.5s

TMVA overtraining check for classifier: BDT

AdaBoost

Example

- AdaBoost, NTrees=500, MinNodeSize=0.5, AdaBoostBeta=0.5, MaxDepth=3, nCuts $=20$, SeparationType=Ginilndex, 10000 events
- Training: 2s, testing: 0.5 s
- Good separation

Background rejection versus Signal efficiency

AdaBoost

Example

This is the TMVA default: 5\%

- AdaBoost, NTrees=500, MinNodeSize=0.05, AdaBoostBeta=0.5, MaxDepth=3, nCuts $=20$, SeparationType=Ginilndex, 10000 events
- Training: 2s, testing: 0.5s
- Bad separation

> | Hyperparameter |
| :---: |
| optimization |

Boosted Decision Trees

Summary

- Ensemble method: many simple models (weak learners) together can make up a complex model
- Good properties:
- Locally 1-dimensional decisions
- Fast suppression of obvious backgrounds
- Robust against outliers
- No special metric or normalization of input variables
- Few parameters (tuning effort, aka hyper-parameter optimisation, is small)
- Trees can be understood, including straightforward ranking of inputs
- Fast training
- Relatively slow in execution

Boosted Decision Trees are very popular in particle physics - still !

Artificial Neural Networks

Biological Neural Networks

- Human brain
- Many processors $=\mathrm{O}\left(10^{11}\right)$ Neurons
- Single processing step slow: O(10 ms $) \sim 100 \mathrm{~Hz}$
- Massively parallel: O(1014) Synapses

- Neurons:
- Generate output signal if combined input signals exceed some threshold
- Natural Neural Networks
- Tolerant against incomplete or noisy inputs
- Self-organised learning: poorly understood

Artificial Neural Networks (ANN)

- Standard non-linear method in supervised learning
- Feed-forward network
- Typically $\mathrm{O}\left(10^{3}\right)$ neurons (in DL up to 10^{9})
- Simple topology (in DL not so simple)
- Fast (O(ns)) ~ GHz
- Training usually slow (slower than BDT)
- Weights W and U by minimisation of loss-function
- Differentiable activation function $\sigma(x)$:

One-Layer Perceptron

- One-layer perceptron implements basic logical gates AND, NOT and OR
- But not XOR! solution: use an additional hidden layer

Multi-Layer Perceptron (MLP)

- One or several hidden layers
- Feed-forward network
- Each layer is fed only by previous layer
- Most important case: one single hidden layer with m nodes (oft: $m>n$)

- Non-linear test statistic:

$$
t(\vec{x})=A^{(2)}\left(\sum_{j}^{m} w_{j}^{(2)} \cdot A^{(1)}\left(\sum_{i=0}^{n} w_{i j}^{(1)} x_{j}\right)\right)
$$

With appropriate ω, a multi-layer perceptron can approximate any continuous function

Loss-Function Minimization

- Loss function $\operatorname{Er}\left(t_{\text {true }}, t(\vec{x})\right)$ describes degree of agreement between classifier and expectation
- Error backpropagation: iterative procedure to determine optimal weights W
- Often used: Mean Average Distance (MAD) or Mean Squared Error (MSE):

$$
\text { MSE: } \quad \operatorname{Er}(\vec{x} \mid W)=\sum_{a=1}^{N} \operatorname{Er}\left(\vec{x}_{a} \mid W\right)=\frac{1}{2} \sum_{a=1}^{N}\left(t_{\text {true }}-t\left(\vec{x}_{a} \mid W\right)\right)^{2}
$$

- Gradient descent method:
- In each iteration (learning cycle) the weights W are modified in the direction of the loss function gradient

$$
W^{(n+1)}=W^{(n)}-\eta \nabla_{W} \mathbf{E r}\left(t_{\text {true }}, t(\vec{x}) \mid W\right)
$$

- η : learning rate (step size)
- Too small: slow convergence
- Too large: algorithm could oscillate around minimum
- Optimum: negative inverse of Hessian

$$
\eta=-\left(\frac{\partial^{2} \mathbf{E r}}{\partial W_{i} \partial W_{j}}\right)^{-1}
$$

Back Propagation

$$
t(\vec{x})=A^{(2)} \sum_{j}^{m} w_{j}^{(2)} y_{j}^{(2)}(\vec{x}) \text { where } y_{j}^{(2)}(\vec{x})=A^{(1)} \sum_{i}^{n} w_{i j}^{(1)} x_{i}
$$

- Loss function MSE: $E=\frac{1}{2}\left(t_{\text {true }}-t\right)^{2}$ and activation function $A^{(1)}=\tanh (\mathrm{x})$
- Change of weights between hidden and output layer (2):

$$
\Delta w_{j}^{(2)}=-\eta \frac{\partial E}{\partial w_{j}^{(2)}}=-\eta \frac{\partial E}{\partial t} \frac{\partial t}{\partial w_{j}^{(2)}}=-\eta\left(t_{\text {true }}-t\right) y_{j}^{(2)}
$$

- Change of weights between input and hidden layer (1):

$$
\Delta w_{i j}^{(1)}=-\eta \frac{\partial E}{\partial w_{i j}^{(1)}}=-\eta \frac{\partial E}{\partial t} \frac{\partial t}{\partial y_{j}^{(2)}} \frac{\partial y_{j}^{(2)}}{\partial w_{i j}^{(1)}}=-\eta\left(t_{\text {true }}-t\right) \cdot y_{j}^{(2)}\left(1-y_{j}^{(2)}\right) w_{j}^{(2)} \cdot x_{i}
$$

Chain rule: back propagation simplifies into passing of actual numbers

Neural Network in TMVA

- MLP: two input variables, 8 hidden nodes, sigmoid activation function, 600 learning cycles ("epochs"), 10000 events
- Training: 23s, application: 0.04 s
- Compare with BDT: 2 s and 0.5 s

Neural Network in TMVA

- MLP: two input variables, 8 hidden nodes, sigmoid activation function, 600 learning cycles ("epochs"), 10000 events
- Training: 23s, application: 0.04 s
- Very good separation

Neural Network in TMVA

- MLP: two input variables, 8 hidden nodes, sigmoid activation function, 600 learning cycles ("epochs"), 500 events
- Training: 1.5s, application: 0.04 s
- 500 events: bad separation, overtraining !

Deep Learning

Representation Learning

Learned features in deeper layers are increasingly invariant to local changes of the input

Historical Perspective

Benchmarks

Goodfellow et al.: Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks arxiv:1312.6082

- In 2015, machine's error rates passed that of humans
- Benchmarks today:
- MNIST dataset: 99.8\% correct recognition 1.5 million parameters
${ }^{35 \%}$ ImageNet: 90.2\% using up to 1 billion parameters

(c) Statista 2021

Deep Neural Networks

- Universal Approximation Theorem (Hornik et al, 1989):

A neural network with a single hidden layer can approximate any function.

- No statement about the number of nodes.
- No guarantee that such a network can actually be trained successfully
- Deeper models can deliver better results with the same number of parameters
- Still a connectionist idea: complex function is composed of several simple functions \rightarrow Representation Learning

Deep Neural Networks

For Picture Recognition

- For the same number of parameters, deeper models can deliver better results (Goodfellow et al, 2014).

Historical Perspective

- The MNIST dataset (1998)
- "NIST" stands for National Institute of Standards and Technology, the agency that originally collected this data. http://yann.lecun.com/exdb/mnist/
- "M" stands for "modified,"
data has been preprocessed for easier use
- Today:
- Still used as sample for benchmark tests
- Training on a laptop takes a few minutes

| 8 | 9 | 0 | 1 | 2 | 3 | 4 | 7 | 8 | 9 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 6 |
| :--- |
| 4 | 2 | 6 | 4 | 7 | 5 | 5 | 4 | 7 | 8 | 9 | 2 | 9 | 3 | 9 | 3 | 8 | 2 | 0 | 5 |
| 0 | 7 | 0 | 4 | 2 | 6 | 5 | 3 | 5 | 3 | 8 | 0 | 0 | 3 | 4 | 1 | 5 | 3 | 0 | 8 |
| 3 | 0 | 6 | 2 | 7 | 1 | 1 | 8 | 1 | 7 | 1 | 3 | 8 | 9 | 7 | 6 | 7 | 4 | 1 | 6 |
| 7 | 5 | 1 | 7 | 1 | 9 | 8 | 0 | 6 | 9 | 4 | 9 | 9 | 3 | 7 | 1 | 9 | 2 | 2 | 5 |
| 3 | 7 | 8 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 0 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 8 | 1 | 0 | 5 | 5 | 1 | 9 | 0 | 4 | 1 | 9 |
| 3 | 8 | 4 | 7 | 7 | 8 | 5 | 0 | 6 | 5 | 5 | 3 | 3 | 3 | 9 | 8 | 1 | 4 | 0 | 6 |
| 1 | 0 | 0 | 6 | 2 | 1 | 1 | 3 | 2 | 8 | 8 | 7 | 8 | 4 | 6 | 0 | 2 | 0 | 3 | 6 |
| 8 | 7 | 1 | 5 | 9 | 9 | 3 | 2 | 4 | 9 | 4 | 6 | 5 | 3 | 2 | 8 | 5 | 9 | 4 | 1 |
| 6 | 5 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 8 | 9 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 6 | 4 | 2 | 6 | 4 | 7 | 5 | 5 |
| 4 | 7 | 8 | 1 | 2 | 9 | 3 | 9 | 3 | 8 | 2 | 0 | 9 | 8 | 0 | 5 | 6 | 0 | 1 | 0 |
| 4 | 2 | 6 | 5 | 5 | 5 | 4 | 3 | 4 | 1 | 5 | 3 | 0 | 8 | 3 | 0 | 6 | 2 | 7 | 1 |
| 1 | 8 | 1 | 7 | 1 | 3 | 8 | 5 | 4 | 2 | 0 | 9 | 7 | 6 | 7 | 4 | 1 | 6 | 8 | 4 |
| 7 | 5 | 1 | 2 | 6 | 7 | 1 | 9 | 8 | 0 | 6 | 9 | 4 | 9 | 9 | 6 | 2 | 3 | 7 | 1 |
| 9 | 2 | 2 | 5 | 3 | 7 | 8 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 0 | 1 | 2 | 3 |
| 4 | 5 | 6 | 7 | 8 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 2 | 1 | 2 | 1 | 3 |
| 9 | 9 | 8 | 5 | 3 | 7 | 0 | 7 | 7 | 5 | 7 | 9 | 9 | 4 | 7 | 0 | 3 | 4 | 1 | 4 |

Keras/Tensorflow example (requires python3.10 and pip):
146357259
http://www.desy.de/~ameyer/da_kseta_22/codesnippets/deeplearning.tar http://www.desy.de/~ameyer/da_kseta_22/codesnippets/deeplearning/tex/Exercise.pdf User: Students pw: only

Keras Interface to Tensorflow

Example

- ConvNet
- Activation
- Max-Pooling
- Flatten
- Dense
- Activation
- Dropout
- Dense
- Activation

Layer (type)	Output Shape	Param \#
conv2d (Conv2D)	(None, 27, 27, 4)	20
activation (Activation)	(None, 27, 27, 4)	0
max_pooling2d (MaxPooling	(None, 13, 13, 4)	0
flatten (Flatten)	(None, 676)	0
dense (Dense)	(None, 16)	10832
activation_1 (Activation)	(None, 16)	0
dropout (Dropout)	(None, 16)	0
dense_1 (Dense)	(None, 10)	170
activation_2 (Activation)	(None, 10)	0
Total params: 11,022 Trainable params: 11,022 Non-trainable params: 0		

- Very simple to set up complex architectures
- Extremely fast optimisation algorithms

Keras/Tensorflow example (requires python3.10 and pip):
http://www.desy.de/~ameyer/da_kseta_22/codesnippets/deeplearning.tar
http://www.desy.de/~ameyer/da_kseta_22/codesnippets/deeplearning/tex/Exercise.pdf

Deep Learning

Summary

- Multilayer Neural Networks show a better performance than single-hidden layer ANN
- More separation power with less nodes
- Breakthrough around 2015: error rate drops below that of humans.
- Fast and powerful software and hardware (e.g. GPU)
- Extremely large (labelled) datasets.
- Different types of deep networks to address specific features
- Convolutional Neural Nets (CNN)
- Recurrent Neutral Nets (RNN)
- Relation Networks (RN)
- Graph Networks (GN)
- Generative Adversarial Networks (GAN)
- Autoencoder (VAE)
- Application in physics: rigorous theory provides important knowledge about correlations between inputs. DL does nevertheless still achieve some improvements.

Conclusions

Conclusions

- Statistical methods to extract maximal information from the data
- Probabilities: including Frequentist and Bayesian view points
- Hypothesis tests and confidence intervals: physicists look for correct hybrid methods
- Profile likelihood ratio: provides signal strength and exclusion limits including systematic uncertainties and correlations
- Classification: a large-scale application of hypothesis tests
- Machine learning: BDT, ANN and a superficial look at Deep Learning
- The scientific cycle
- Interplay between theory and experiment: determine and document observations in a reproducible and/or exp.independent way
- Statistical uncertainties: well understood concept
- Systematic uncertainties:
- no general rule, often determined from ancillary measurements -> statistical effects
- calibrations, resolutions, efficiencies
- proceed with care, reflexion and courage

Backup

Fisher Discriminant

- Maximize $J(\vec{a})=\frac{\left(\tau_{s}-\tau_{b}\right)^{2}}{\Sigma_{s}^{2}+\Sigma_{b}^{2}}$
- For $\frac{\partial J(\vec{a})}{\partial a_{i}}=0$, one obtains Fisher's linear discriminant

$$
t(\vec{x})=\vec{a}^{T} \vec{x} \quad \text { mit } \vec{a} \propto W^{-1}\left(\vec{\mu}_{s}-\vec{\mu}_{b}\right) \quad \text { where } \mathrm{W}=\Sigma_{\mathrm{s}}{ }^{2}+\Sigma_{\mathrm{b}}{ }^{2}
$$

- Example: multivariate Gauss distributions with covariance matrix V, i.e.

$$
t(\vec{x})=V^{-1}\left(\vec{\mu}_{s}-\vec{\mu}_{b}\right) \vec{x}+a_{0}
$$

- Compare to likelihood ratio: Fisher discriminant is equivalent, i.e. monotonic function of x :

$$
\begin{aligned}
r=\frac{g\left(\vec{x} \mid H_{s}\right)}{g\left(\vec{x} \mid H_{b}\right)} & =\exp \left[-\frac{1}{2}\left(\vec{x}-\vec{\mu}_{s}\right)^{T} V^{-1}\left(\vec{x}-\vec{\mu}_{s}\right)+\frac{1}{2}\left(\vec{x}-\vec{\mu}_{b}\right)^{T} V^{-1}\left(\vec{x}-\vec{\mu}_{b}\right)\right] \\
& =\exp \left[\left(\vec{\mu}_{s}-\vec{\mu}_{b}\right)^{T} V^{-1} \vec{x}-\frac{1}{2}\left(\vec{\mu}_{s}^{T} V^{-1} \vec{\mu}_{s}-\vec{\mu}_{b}^{T} V^{-1} \vec{\mu}_{b}\right)\right] \propto \exp [t(\vec{x})]
\end{aligned}
$$

Historical Perspective

- 1940s: cybernetics (information transfer in machine and animals)
- Research on machine learning starts with the linear perceptron
- Interest decreases due to (supposed) limitations (e.g. XOR problem, Minsky 1969)
- 1980s: connectionism (many simple functions combined can solve complex problems)
- ANN, BDT, SVN: good results for many non-linear problems
- Very high expectations, initially not met (esp. slow training of ANN and application speed of BDT)
- TMVA (since 2005) and scikit-learn (2010) were built on these (and other methods)
- Currently: Deep Learning
- Tensorflow/keras, pytorch
- Fast-growing number of extremely powerful tools and techniques
- No limits in sight (?!)

Historical Perspective

- Originally strong interest in unsupervised learning techniques ("artificial intelligence")
- Today predominantly supervised learning with (extremely large) data samples
- Huge commercial interests, modern software packages, powerful computing (GPU)
- Number of neurons in functional networks doubles roughly every 2.4 years. Status 2016: ~5•106 parameters (about the size of the nervous system of insects)

Large number of neurons require extremely large training datasets - and good software and computing

Deep Neural Networks

- Universal Approximation Theorem (Hornik et al, 1989):

A neural network with a single hidden layer can approximate any function.

- No statement about the number of nodes.
- No guarantee that such a network can actually be trained successfully

Deep Neural Networks

- Universal Approximation Theorem (Hornik et al, 1989):

A neural network with a single hidden layer can approximate any function.

- No statement about the number of nodes.
- No guarantee that such a network can actually be trained successfully
- Deeper models can deliver better results with the same number of parameters
- Still a connectionist idea: complex function is composed of several simple functions \rightarrow Representation Learning

Network Architectures

- Feedforward Neural Network
- Dense Layers: completely connected layers
- No feedback connections
- Reduce number of parameters ("sparsification" or "complexity reduction") without performance loss: use specific types of nodes as building blocks
- Convolutional Neural Networks / Representation Learning
- Recurrent Neural Networks
- Relation Networks
- Graph Networks
- Adversarial Networks
- Autoencoders

Representation Learning

Learned features in deeper layers are increasingly invariant to local changes of the input

Representation Learning

convolution + pooling layers

http://parkorbird.flickr.com/

- Sequence of multiple convolution and pooling layers, finish with a deep net of fully connected layers

Convolutional Layer

- depth - number of filters (also known as kernels)
- size - dimension of the filter e.g. 3×3 or $3 \times 3 \times 4$
- stride - step size while sliding the filter through the input
- padding - behavior of the convolution near the borders

Convolutional Layer

Example

- Vertical edges by subtraction of each original pixel value by the value of the pixel to the left (transformation described by a Conv.Net with appropriate Kernel)
- A few simple computations lead to drastic reduction of the number of relevant pixels, i.e. training parameters, without much loss of information.

Max Pooling

- depth - number of filters (also known as kernels)
- size - dimension of the filter e.g. 2×2 or $2 \times 2 \times 4$
- stride - step size while sliding the filter through the input
- padding - behavior of the convolution near the borders

Representation Learning

convolution + pooling layers
http://parkorbird.flickr.com/

- Each stage has a larger degree of invariance
- Number of features increases as resolution is reduced
- Final layer is fully connected with a multinomial activation function (softmax)

Regularisation

- Modification of the learning algorithm to reduce the generalisation error (avoid over-training)
- Reduce number of parameters w/o capacity loss: "best model (in the sense of minimizing the generalization error) is a large model that has been regularised appropriately." (DLbook, p229)
- Methods:
- Early stopping, stop before overtraining
- Weight decay: penalty terms against high weights
- Sparse representations: penalty term against activation
- Drop-Out: remove single nodes during the training. Repeat with different DropOut conditions. Reduce dependence of network behaviour on single nodes
- Parameter sharing: common parameters across nodes, e.g. ConvNet Kernel
- Adversarial training: use background to improve robustness.
- In supervised problems in HEP, generation/simulation of more data is often easier than regularisation

Drop Out

Regularisation

- Drop-Out: reduce dependence of network behaviour on single nodes
- remove single nodes during the training
- repeat with different DropOut conditions

Recurrent Neural Networks

- Share inputs across different time slices
- Long short-term memory

Dense

Convolutional Neural Network (CNN)

Recurrent Neural Network (RNN)

Relation Networks

Relations between Objects

- Objects (=> nodes)
- Relations (=> weights, i.e. connections)
- "left of"
- "same size as"
- "heavier than ..."
- Reduce complexity through weight-sharing among objects e.g.

$$
\mathrm{RN}\left(o_{1}, o_{2}, \ldots, o_{n}\right)=f_{\phi}\left(\sum_{i, j} g_{\Theta}\left(o_{i}, o_{j}\right)\right)
$$

Relation Networks

Relations between Objects

Graph Networks

- A graph is a 3-tuple: $\mathrm{G}=(\mathbf{u}, \mathbf{V}, \mathbf{E})$ where
- u: global attributes
- V: a set of nodes (objects) with attributes
- E: the set of edges (relations) with weights
arXiv:2007.13681
arXiv:1806.01261
Example: application for calorimeter showers

Try out the demos in the paper, e.g. tinyurl.com/gn-shortest-path-demo

Adversarial Neural Networks

Generator

Discriminator

- Generative network (G) learns to create images from random inputs
- Adversarial network (A) distinguishes fake and real images
- Adapt weights of G so that the loss of A is maximised
- Train on original and adversarial examples

Autoencoder

Unsupervised Learning for Anomaly Detection

- Learn efficient data coding, i.e. a representation of the data with reduced dimensionality
- Target: $\tilde{x}_{i}=x_{i}$

Applications in particle physics:

- search for new physics: e.g. https:// arxiv.org/abs/1811.10276
- Encoding $\mathrm{h}\left(\mathrm{x}_{\mathrm{i}}\right)$: latent variables, or latent representation
- data quality monitoring
- etc...

