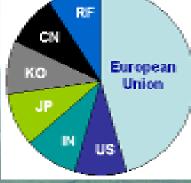
ITER RF Systems and Microwave Diagnostics

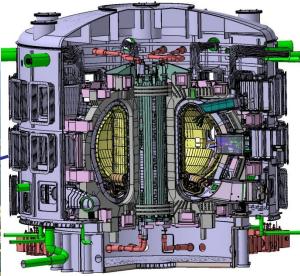
Stefan Simrock, ITER

LLRF 2011, Hamburg, Germany, Oct. 17-20, 2011

Outline

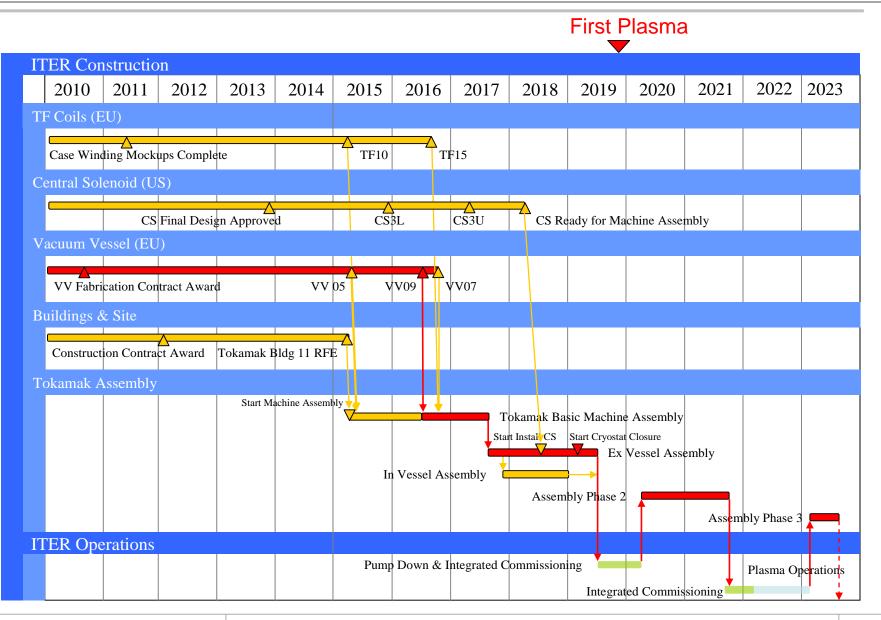

- ITER Project
- Heating Systems
- Diagnostics
- Plasma Control System

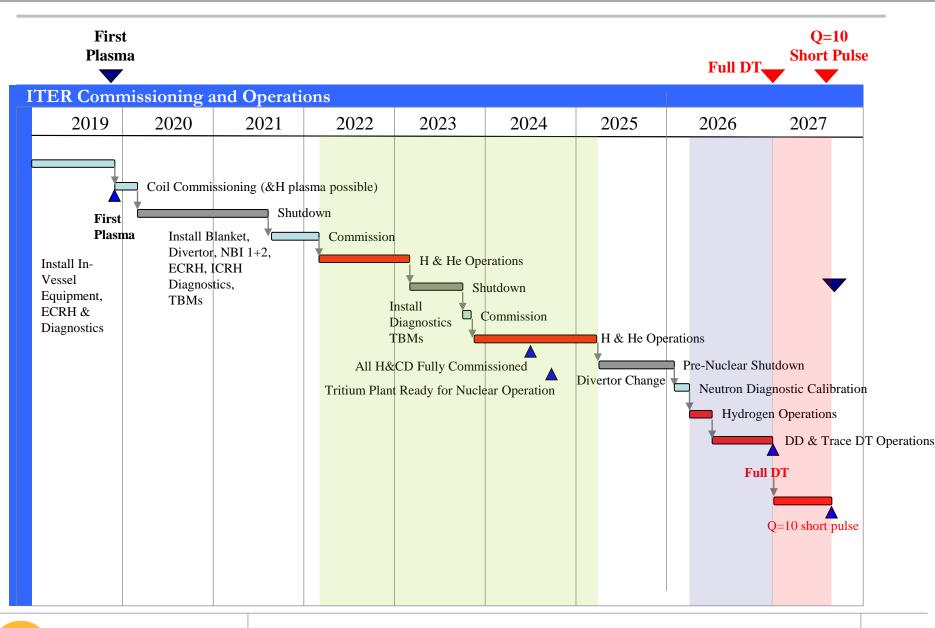
ITER Project



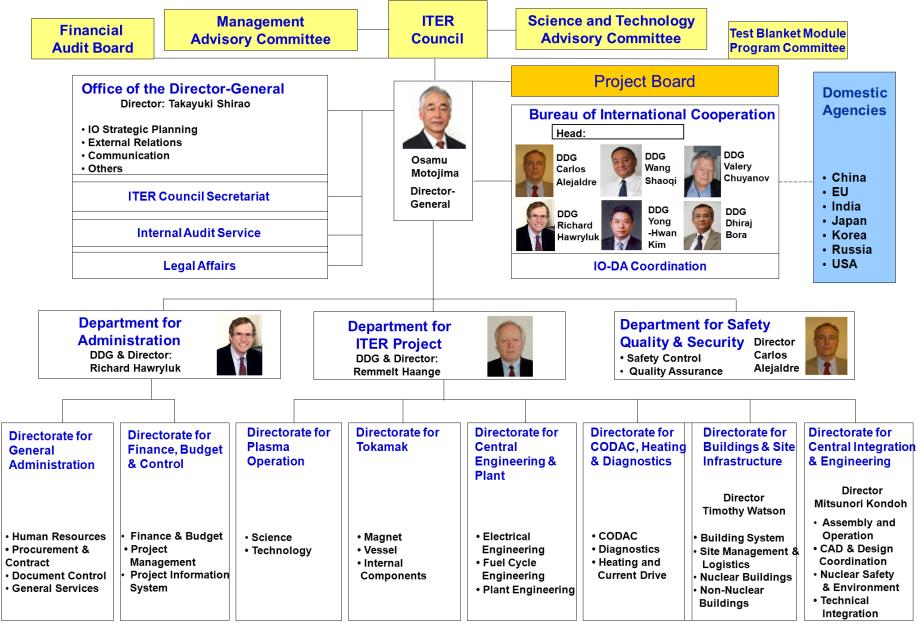
LLRF 2011, Hamburg, Germany, Oct. 17-20, 2011

ITER - A Unique Scientific, Technological and Industrial Project


Seven Party Sharing

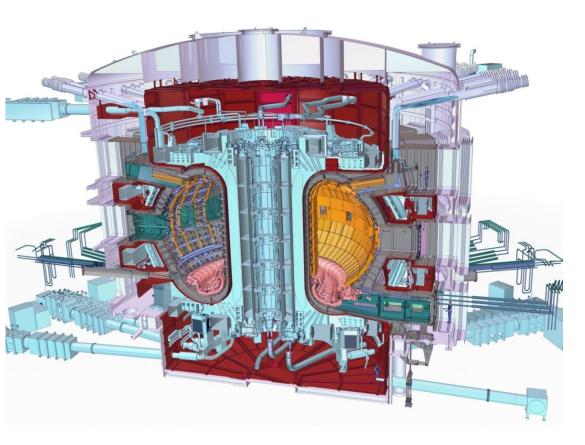

Objective - Demonstrate the scientific and technological feasibility of fusion energy
Goal - produce significant fusion power amplification (10x the power input):output 500 MW

LLRF 2011, Hamburg, Germany, Oct. 17-20, 2011

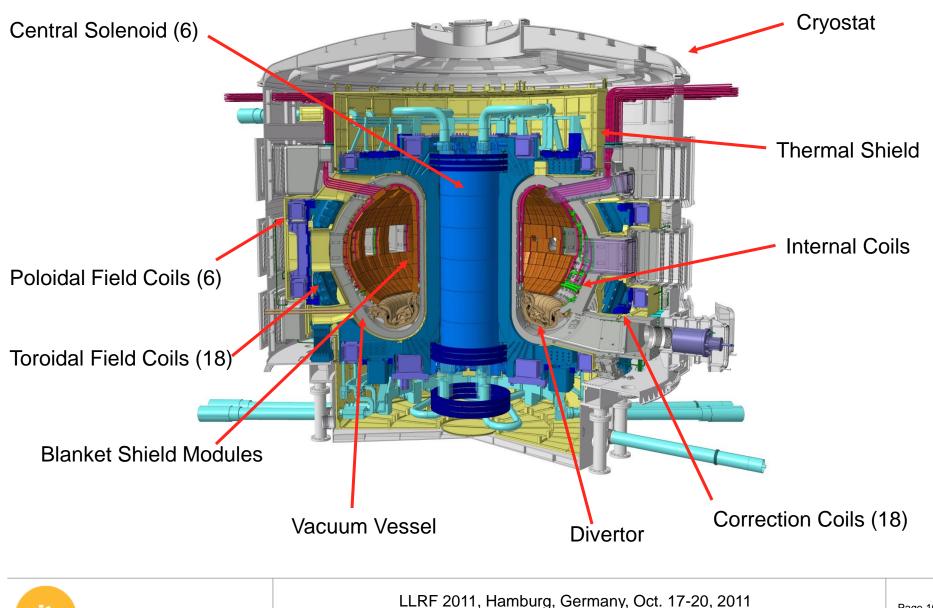

ITER Construction Schedule

ITER Experimental Schedule to DT

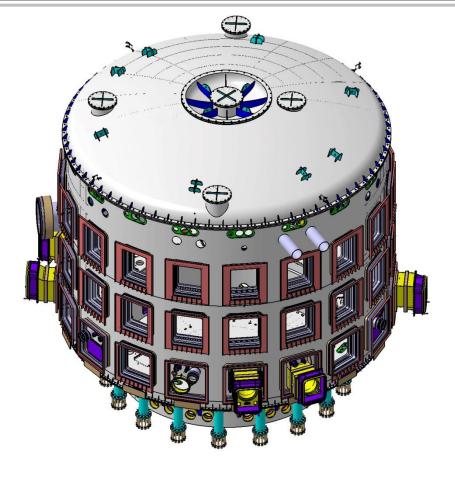
ITER New Organization Structure

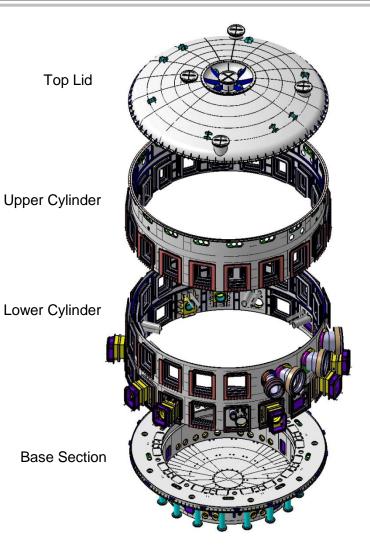

ITER Platform – September 2011

ITER Project

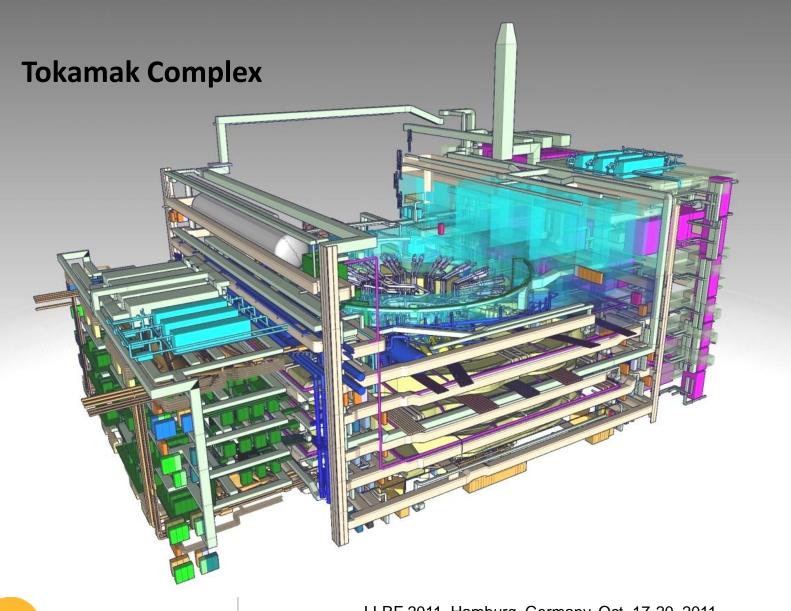

Principal fusion goals for ITER:

- demonstrate Q=10 for 400 seconds
- demonstrate Q=5 for 1000 seconds



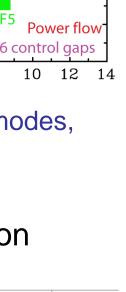

Plasma Current	15 MA
Toroidal Field	5.3 T
Major Radius	6.2 m
Minor Radius	2.0 m
Elongation κ_{96}	1.7
Triangularity δ_{96}	0.33
Fusion Power	500 MW
Q	10
Burn Time	~400 s

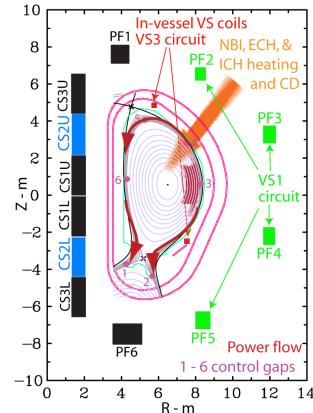
ITER Tokomak – Major Components



Cryostat with

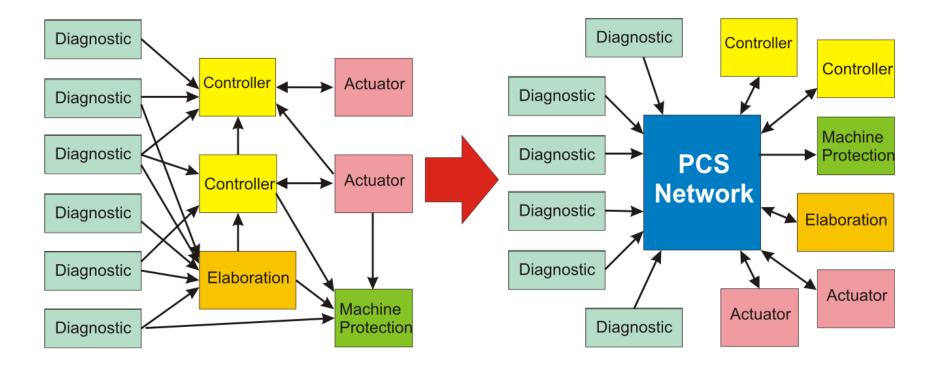
Plant Systems Configuration Models


Plasma Control System

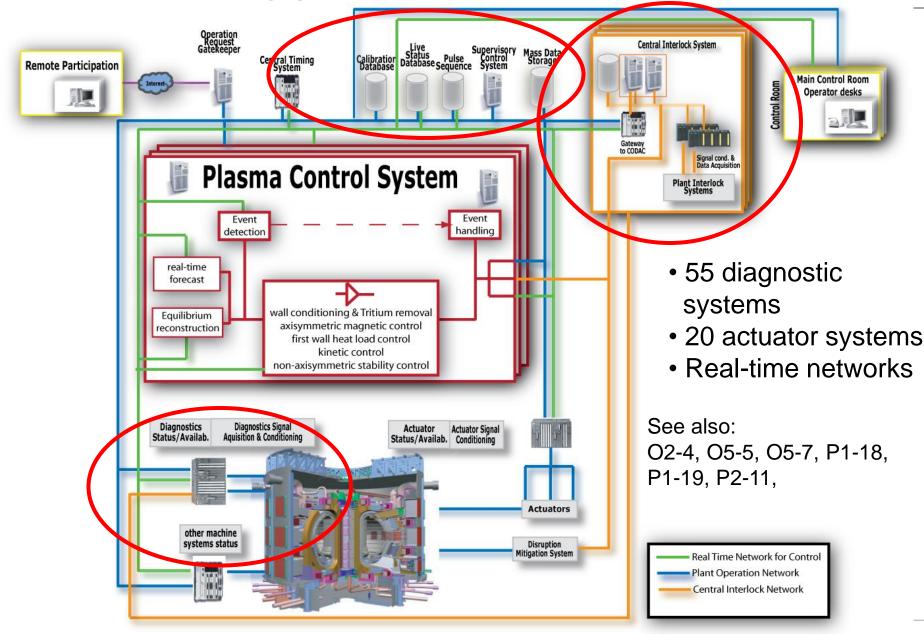


LLRF 2011, Hamburg, Germany, Oct. 17-20, 2011

Requirements for the ITER PCS (basic and advanced control)


- Plasma equilibrium and basic control
 - Plasma shape, position, density, current
 - Routine and robust
- Plasma kinetic control
 - Fuel mixture, fusion power, radiated power...
 - Exploratory to robust
- Control for advanced operation
 - current profile, temperature profile
 - Exploratory
- Active MHD stability control
 - Error field modes, edge localized modes, neoclassical tearing modes, resistive wall modes
 - Exploratory to established
- Disruption/vertical displacement avoidance and mitigation
 - Exploratory to robust

Plasma Control System


Since a large number of Module outputs need to be shared **a PCS network becomes necessary**.

The network should allow efficient management of PCS, and at the same time satisfy the technical requirements. →

PCS Interfaces in ITER

ITER Plasma Control requires multiple actuators

Wall conditioning and tritium removal requires ion cyclotron (IC), electron cyclotron (EC), & high frequency glow discharge cleaning (HFGDC))

Plasma axisymmetric magnetic control requires Central Solenoid (CS), Poloidal Field (PF), and internal Vertical Stability (VS) coils & power supplies

Plasma kinetic control requires heating and current drive H&CD (IC, EC, & neutral beam injection (NBI)), H, ⁴He, ³He, D, T, Ar, Ne, and N gas and H, D, T, Ar, Ne, and N pellet injection, realtime pumping & strike point control

Non-axisymmetric stability control requires H&CD systems, ELM coils and pellet pacing, gas and pellet fuelling, shape control, & external correction coils

Event handling requires also disruption and runaway mitigation

RF Heating Systems

LLRF 2011, Hamburg, Germany, Oct. 17-20, 2011

Plasma Auxiliary Systems

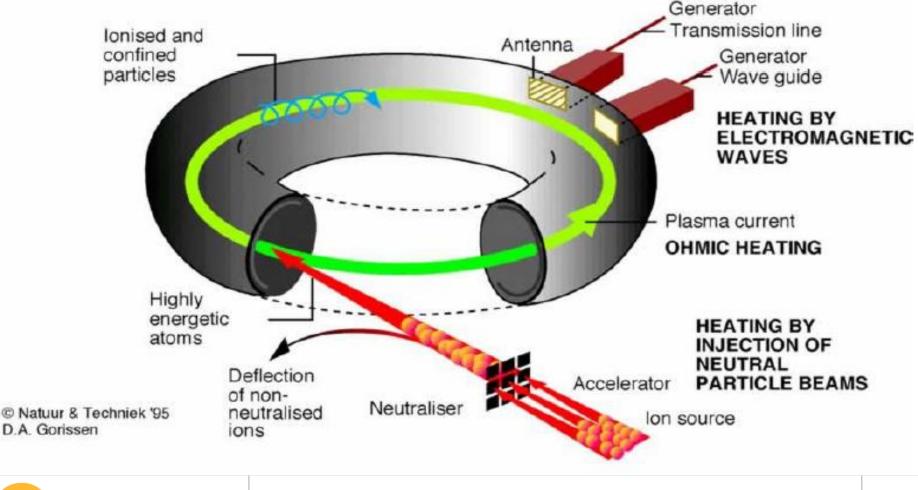
They are absolutely necessary for a Tokamak to operate in high performance regime

• Heating and current drive systems

The Auxiliary Heating Systems are the tools to make the plasma perform : Heating to thermonuclear temperatures, current drive for long pulses, mode stabilization, plasma breakdown and current rise.

• Diagnostics

Diagnostics are key part of tokamak research


They provide the reality-check for our physics understanding

• Instrumentation and Control System

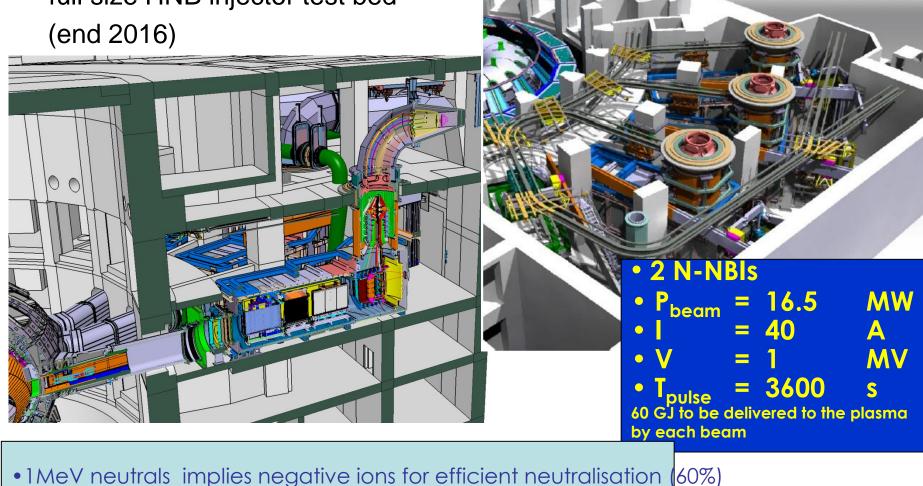
All hardware and software required to control and operate the ITER machine. Comprises Plant System I&C and Central I&C Systems.

Heating and Current Drive Systems

How to obtain the ultra high temperatures needed ? Ohmic heating: $\eta \propto T^{-3/2}$ => limited to T~1keV, additional heating needed

RF Heating and Current Drive Systems

		-	
NB	IC	EC	LH
Neutral Beam - 1 MeV	Ion Cyclotron 40-55MHz	Electron Cyclotron 170GHz	Lower Hybrid ~5 GHz
		Waveguide Miter bends Internal shield Focusing mirror Co-direction Co-direction Counter direction Support plate Steering mirror Mirror Mirror Co-direction direction Support plate Front shield	High power water load Taper section PAM J de converter A de converter
33MW*	20MW*	20MW*	OMW*
+16.5MW [#]	+20MW#	+20MW#	+40MW#
Bulk current drive limited modulation	Sawtooth control modulation < 1 kHz	NTM/sawtooth control modulation up to 5 kHz	Off-axis bulk current drive
*Baseline Power	P _{aux} for Q=		MW (max installed)
[#] Possible Upgrade	scenario: 5	OMW (110	MW simultaneous)
iter china eu india japan korea russia	china eu india japan korea russia usa LLRF 2011, Hamburg, Germany, Oct. 17-20, 2011 Page 2		

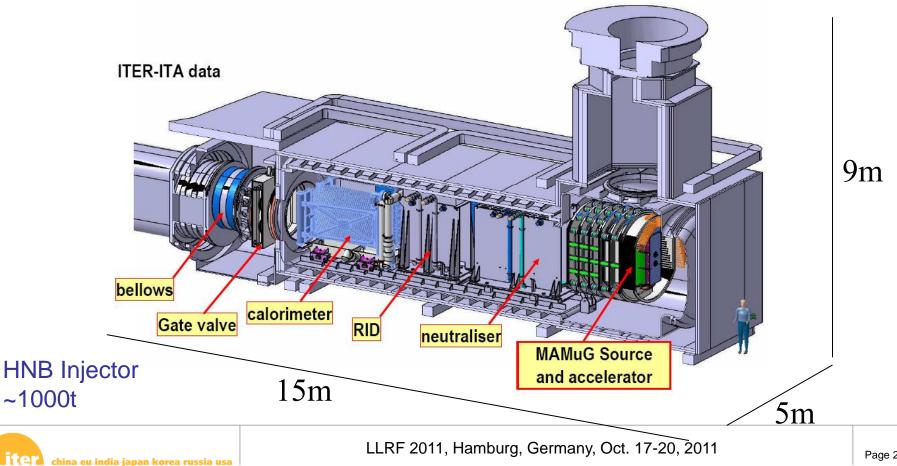

Provide a total auxiliary heating power of 73 MW to achieve H mode and Q=10

- 2 Heating (HNB) neutral Beams at 1 MV (2X16.5 MW) and Diagnostics (DNB) neutral Beam at 100 kV
- Electron Cyclotron System (EC) (20 MW at 170 GHz)
- Ion Cyclotron System (IC) (20 MW at 40-55 MHz)

Neutral Beam Injector

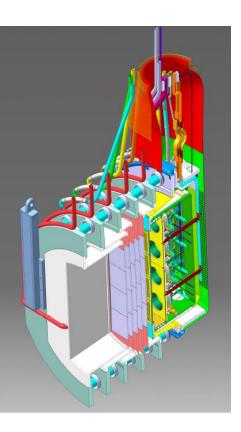
First of its kind; hence a Neutral Beam Test Facility in Padua:

- 100kV ion source test bed (beg. 2014)
- full size HNB injector test bed • (end 2016)



Neutral Beam Injector

The Injector can be separated in


beam components (Ion Source, Accelerator, Neutralizer, Residual Ion Dump and Calorimeter)

other components (cryo-pump, vessels, fast shutter, duct, magnetic shielding, and residual magnetic field compensating coils)

Challenges for Neutral Beam Injector

Large scale negative ion source

Challenges:

- High current density 200A/m² in D⁻ / 300A/m² in H⁻
- High reliability / low maintenance frequency , 2years
- Stable long pulse operation (for 1hour ITER pulse)
- Spatial and temporal uniformity \pm 10%

on source

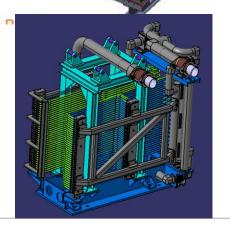
Five stage MAMuG accelerator

High heat-flux components, like calorimeter or <u>R</u>esidual <u>Ion Dump</u>

- Hypervapotron or Swirl-tube technology
- Actively cooled
- CuCrZr

RID: Remove remaining charged ions in the beam after neutralisation

High Heat Flux Panels

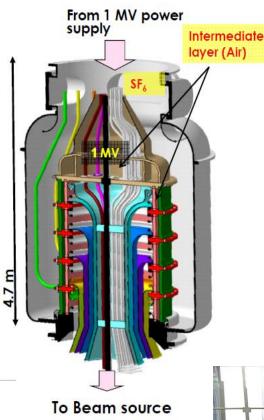

Calorimeter:

power and

measure beam

Used to

profile


Hamburg, Germany, Oct. 17-20, 2011

5 stage <u>M</u>ulti <u>Aperture</u> <u>Mu</u>lti <u>G</u>rid accelerator

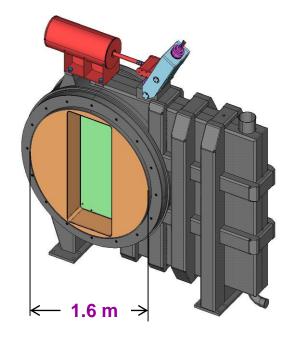
- 200kV per stage
- 1280 apertures in 4 x
 4 matrix

Challenges for Neutral Beam Injector

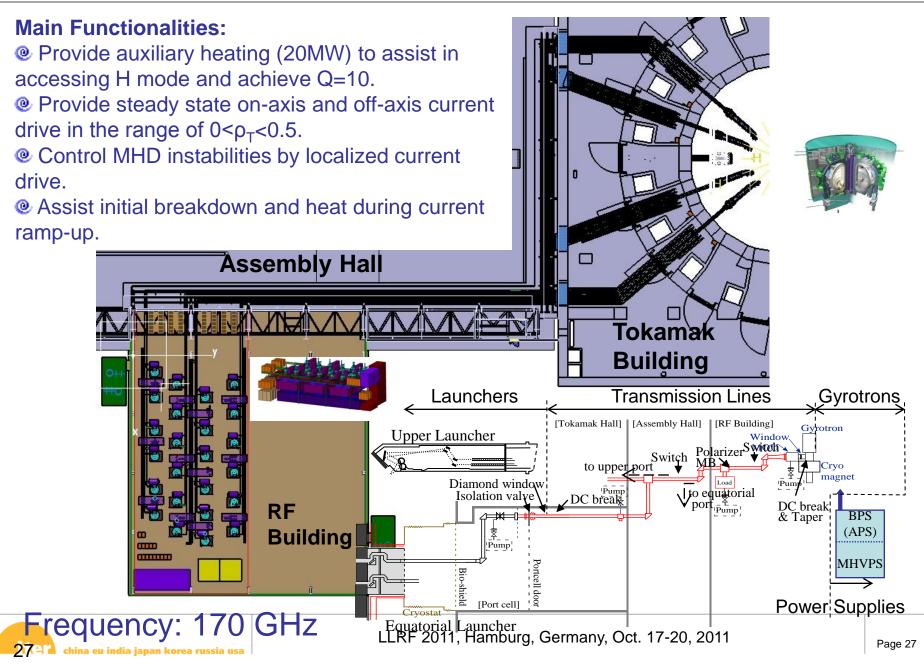
1MV HV Bushing for the Heating Neutral Beam Injector

High voltage, cooling water and H_2/D_2 gas are fed to the beam source through HV transmission line (SF6 gas insulation): Issues:

- HV Holding (1MV)
- •Tritium confinement
- •Vacuum leak tightness
- Largest ceramic ring with brazed Kovar plate in the world produced for HV Bushing



Development of an all-metal seal isolation valve of ~ 1.6m diameter


Used to isolate the injectors from the ITER vacuum vessel for interventions:

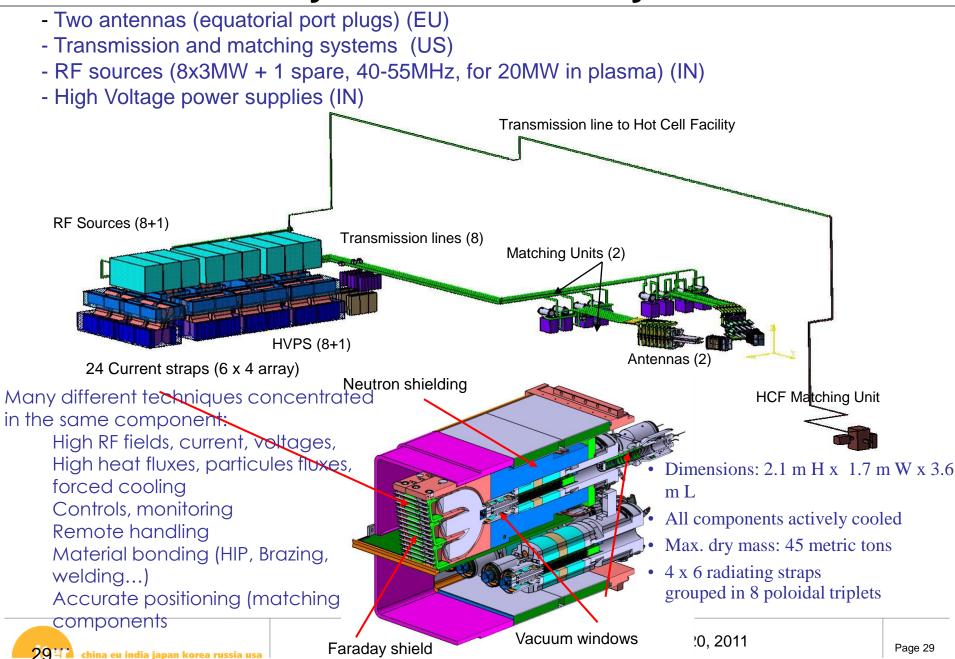
•Weight more than 14.5 tons

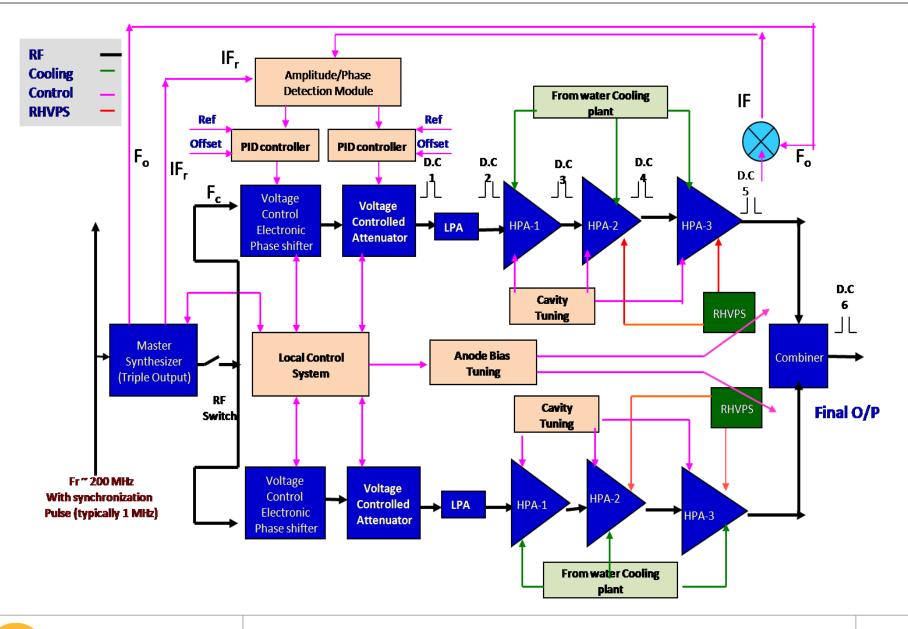
Maximum permissible leak rate 1 x 10⁻¹⁰ Pa m³/s
Has to withstand 20MPa in injector, vacuum in ITER vacuum vessel

Electron Cyclotron H & CD System

Electron Cyclotron H & CD System

Cryogen free magnet for 1MW gyrotron (Cryomagnetics, Inc.)


2897 china eu india japan korea russia usa


- HV power supplies (60kV, 100A) and (50kV, <1A) (EU, IN)
 - Evacuated waveguide components (US, EU, JA)
 - Cooling manifold systems (JA, EU, RF, IN, US)
- Cryo-magnets and condensors Control systems (JA, EU, RF, IN, US) for gyrotrons (EU, JA, RF, IN)

LLRF 2011, Hamburg, Germany, Oct. 17-20, 2011

Ion Cyclotron H & CD System

ICH RF Power Source Diagram

Diagnostic Systems

LLRF 2011, Hamburg, Germany, Oct. 17-20, 2011

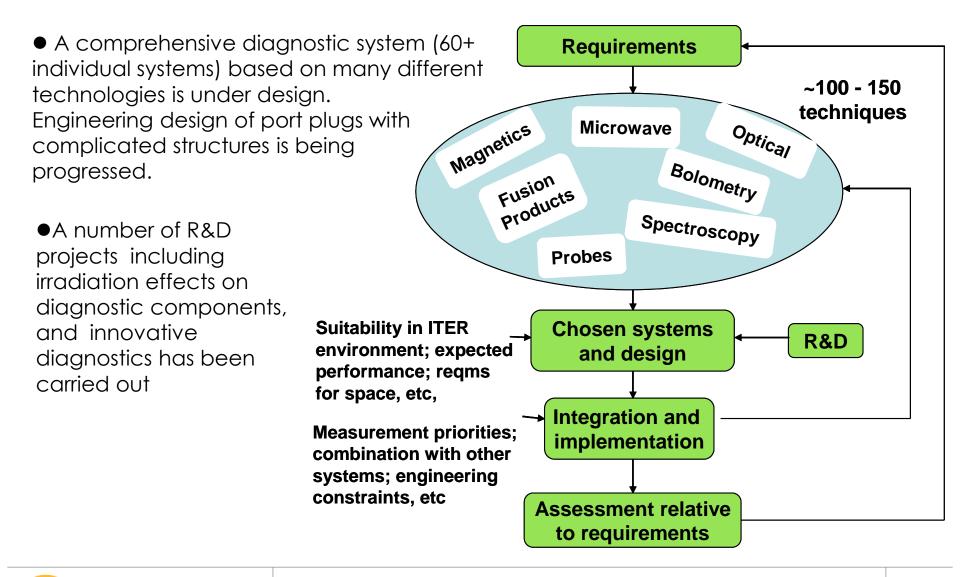
• In order to prevent the plasma and auxiliary heating systems from damaging the internal components, especially the divertor and first wall, measurements of key parameters will be needed in real time at very high reliability, for example: separatrix/wall gap, first wall temperature, fusion power, etc. Machine Protection

• Many other measurements are needed to control the plasma in real time so that the required operating regime and plasma performance is achieved, for example: plasma shape and position, plasma current, electron density, impurities, etc Plasma Control

•Additional measurements are needed for specific physics studies, for example: confined and escaping alpha particles, turbulence, n_e and T_e fluctuations, etc Physics Studies

Environment for ITER Diagnostics

Relative to existing machines, on ITER some of the diagnostic components will be subject to (relative to JET)


- Neutron and gamma fluxes (0.1 1) x10¹⁸ n / m²s (x 5–50)
- Nuclear heating 0.3 3 MW / m³ (x 5 50)
- High fluxes of energetic neutral particles from charge exchange processes (to x5)
- Pulse length of 3600s (to x 100)
- High neutron fluence (0.2 2) x 10²⁵ n / m² (> x 10⁴ !)
- For Instrumentation and Controls relevant are:
 - High magnetic field and radiation levels in port cell
 Long cables to diagnostic building

Selected Measurements

GROUP 1a	GROUP 1b	GROUP 2
Measurements For Machine Protection and	Additional Measurements for Control in	Additional Measurements for Performance
Basic Control	Specific Scenarios	Eval. and Physics
Plasma shape and position, separatrix- wall		Confined <i>a</i> -particles
gaps, gap between separatrixes	Helium density profile (core)	TAE Modes, fishbones
Plasma current, q(a), q(95%)	Plasma rot. (tor and pol)	T _e profile (edge)
Loop voltage	Current density profile (q-profile)	
Fusion power	Electron temperature profile (core)	n _e , T _e profiles (X-point)
$\beta_N = \beta_{tor}(aB/I)$	Electron den profile (core and edge)	T _i in divertor
Line-averaged electron density	Ion temperature profile (core)	Plasma flow (divertor)
Impurity and D,T influx (divertor, & main	Radiation power profile (core, X-point	nT/nD/nH (edge)
plasma)	& divertor)	nT/nD/nH (divertor)
Surface temp. (div. & upper plates)	Zeff profile	T _e fluctuations
Surface temperature (first wall)	Helium density (divertor)	ne fluctuations
Runaway electrons	Heat deposition profile (divertor)	Radial electric field and field
'Halo' currents	Ionization front position in divertor	fluctuations
Radiated power (main pla, X-pt & div).	Impurity density profiles	Edge turbulence
Divertor detachment indicator	Neutral density between plasma and first	MHD activity in plasma core
(J _{sat} , n _e , T _e at divertor plate)	wall	
Disruption precursors (locked modes,m=2)	n _e of divertor plasma	
H/L mode indicator	T _e of divertor plasma	
Z _{eff} (line-averaged)		
nT/nD in plasma core	Alpha-particle loss	
ELMs	Low m/n MHD activity Sawteeth	
	Net erosion (divertor plate)	
Gas pressure (divertor & duct)	Neutron fluence	
Gas composition (divertor & duct)		
Dust		

Expect to meet measurement requirements; performance not yet known; expect not to meet requirements

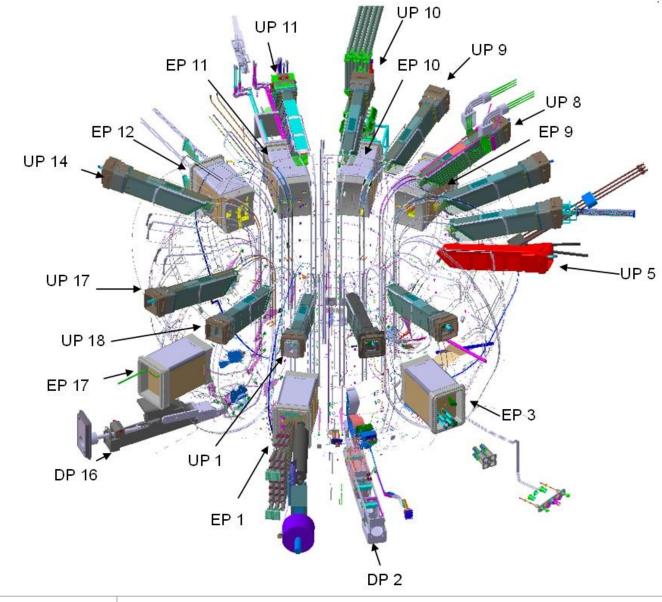
ITER Diagnostics Technologies

Selected Diagnostics for ITER

Magnetic Diagnostics	Spectroscopic and NPA Systems
Vessel Magnetics	CXRS Active Spectr. (based on DNB)
In-Vessel Magnetics	H Alpha Spectroscopy
Divertor Coils	VUV Impurity Monitoring (Main Plasma)
Continuous Rogowski Coils	Visible & UV Impurity Monitoring (Div)
Diamagnetic Loop	X-Ray Crystal Spectrometers
Halo Current Sensors	Visible Continuum Array
Neutron Diagnostics	Soft X-Ray Array
Radial Neutron Camera	Neutral Particle Analysers
Vertical Neutron Camera	Laser Induced Fluorescence (N/C)
Microfission Chambers (In-Vessel) (N/C)	MSE based on heating beam
Neutron Flux Monitors (Ex-Vessel)	Microwave Diagnostics
Gamma-Ray Spectrometers	ECE Diagnostics for Main Plasma
Neutron Activation System	Reflectometers for Main Plasma
Lost Alpha Detectors (N/C)	Reflectometers for Plasma Position
Knock-on Tail Neutron Spectrom. (N/C)	Reflectometers for Divertor Plasma
Optical Systems	Fast Wave Reflectometry (N/C)
Thomson Scattering (Core)	Plasma-Facing Comps and Operational Diag
Thomson Scattering (Edge)	IR Cameras, visible/IR TV
Thomson Scattering (Divertor region)	Thermocouples
Toroidal Interferom./Polarimetric System	Pressure Gauges
Polarimetric System (Pol. Field Meas)	Residual Gas Analyzers
Collective Scattering System	IR Thermography Divertor
Bolometric System	Langmuir Probes
Bolometric Array For Main Plasma	Diagnostic Neutral Beam
Bolometric Array For Divertor	

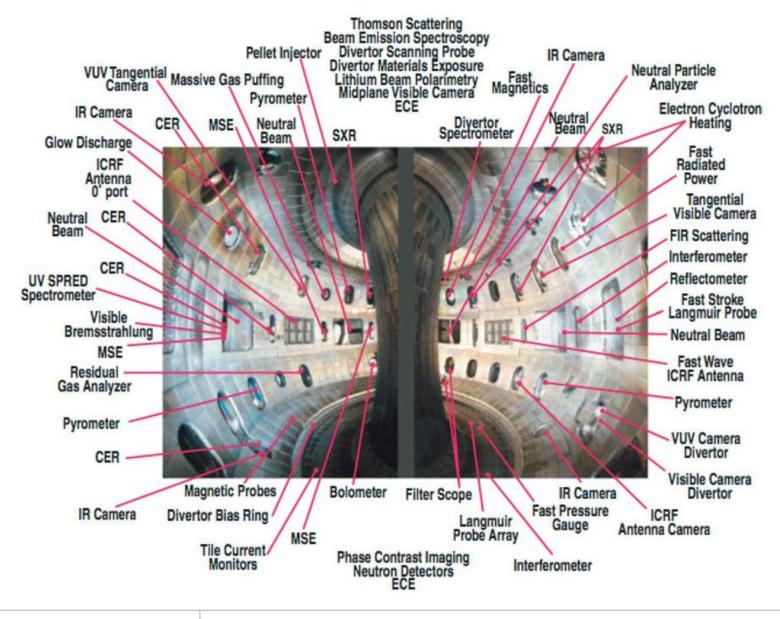
Diagnostics by Type (1)

Selected Diagnostic System	Parameters Measured
Magnetic l	Diagnostics
Coils and loops mounted on the interior surface of the vacuum vessel. Halo current sensors mounted on the blanket shield module supports. <i>Coils mounted between the vacuum vessel skins</i> . Rogowski coils and <i>loops</i> mounted on the exterior surface of the vacuum vessel. Coils mounted in the divertor.	Plasma Current, Plasma Position and Shape, Loop Voltage, Plasma Energy, Locked-modes Low (m,n) MHD Modes, Sawteeth, Disruption Precursors, Halo Currents, Toroidal Magnetic Field, Static error field of PF and TF, High Frequency macro instabilities (Fishbones, TAE Modes)
	ct Diagnostics
Radial Neutron Camera, Vertical Neutron Camera, Micro-fission Chambers (N/C) Neutron Flux Monitors (Ex-Vessel) Gamma-Ray Spectrometer Activation System, Lost Alpha Detectors (N/C) Knock-on Tail Neutron Spectrometer (N/C)	Total Neutron source strength, <i>Neutron/Alpha</i> <i>source profile</i> , Fusion Power, Fusion power density, Ion temperature profile, Neutron fluence on the first wall, nT/nD in plasma core, <i>Confined</i> <i>alpha particles, Energy and Density of escaping</i> <i>alphas</i>


Diagnostics by Type (2)

Optical/IR(Infra-Red) Systems							
Core Thomson Scattering Line-Averaged Electron Density							
Edge Thomson Scattering, X-Point Thomson	Electron Temperature Profile (Core and Edge)						
Scattering, Divertor Thomson Scattering	Electron Density Profile (Core and Edge)						
Toroidal Interferometer/ Polarimeter, Polarimeter	Current profile						
(Poloidal Field Measurement)	Divertor Electron Parameters						
Collective Scattering System	Confined alpha particles.						
Bolometr	ic Systems						
Bolometer arrays mounted in the ports, in theTotal Radiated power, Divertor radiated power							
divertor and in the vacuum vessel.	Radiation profile (core and divertor)						
Spectroscopic and Neutra	Particle Analyser Systems						
H Alpha Spectroscopy, Visible Continuum Array	Ion temperature profile, Core He density,						
Main Plasma and Divertor Impurity Monitors, X-	Impurity density profile, Plasma rotation,						
Ray Crystal Spectrometers,	ELMs, L/H mode indicator, nT/nD & nH/nD in						
Charge eXchange Recombination Spectroscopy	the core, edge and divertor, Impurity species						
(CXRS) based on DNB, Motional Stark Effect	identification, Impurity influx, Divertor He						
(MSE) based on heating beam, Soft X-Ray Array	(MSE) based on heating beam, Soft X-Ray Array density, Ionisation front position, Zeff profile,						
(N/C), Neutral Particle Analysers (NPA), Laser	Line averaged electron density, <i>Confined alphas</i> ,						
Induced Fluorescence (N/C)	Current density profile.						

Diagnostics by Type (3)


Microwave	Diagnostics
Electron Cyclotron Emission (ECE)	Plasma position and shape, Locked Modes,
Main Plasma Reflectometer	Low (m,n) MHD Modes, Sawteeth, Disruption
Plasma Position Reflectometer, Divertor	Precursors, Plasma Rotation, H-mode indicator,
Interferometer / Reflectometer, Divertor EC	Runaway electrons, Electron Temperature Profile,
absorption (ECA), Main Wave Plasma Microwave	Electron Density Profile, High Frequency
Scattering, Fast Wave Reflectometry (N/C)	microwave instabilities, Divertor electron
	parameters
Plasma-Facing Components	and Operational Diagnostics
IR/Visible Cameras, Thermocouples, Pressure	Runaway electrons: energy and current
Gauges, Residual Gas Analysers, IR Thermography	Gas pressure and composition in divertor
(Divertor), Langmuir Probes	Image and temperature of first wall
	Gas pressure and composition in main chamber and
	duct, <i>Escaping alphas</i> , Ion flux, ne and Te at
	divertors plates, <i>Surface temperature and power</i>
	load in divertor.

Diagnostic Locations

LLRF 2011, Hamburg, Germany, Oct. 17-20, 2011

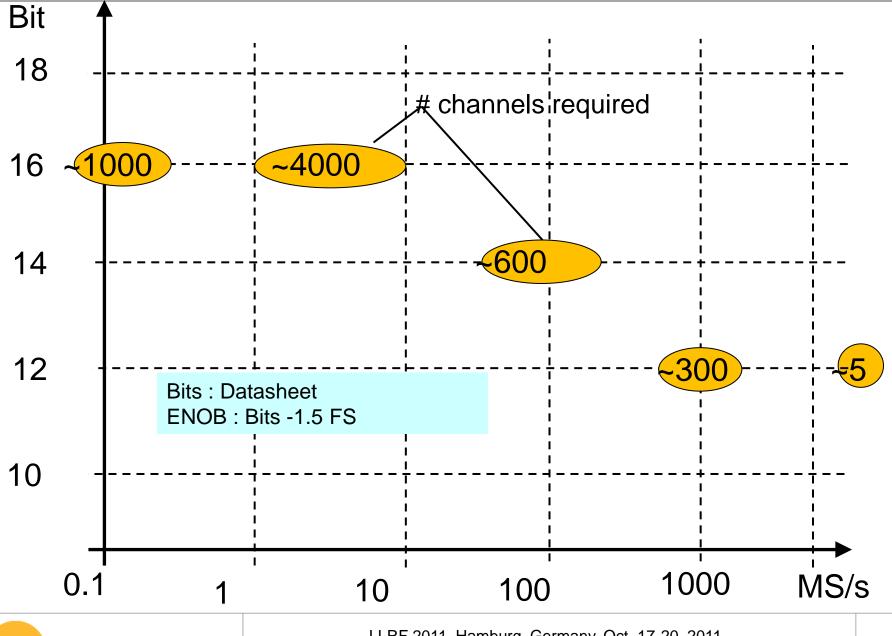
DIII-D Example for Installed Diagnostics

Basic Diagnostic Needs for I&C

- Data Acquisition
 - 100 kS/s ADCs (16+ bit resolution, 32 ch.)
 - 1 MS/s ADCs (16+ bit resolution, 8 ch.)
 - 100 MS/s ADCs (14+ bit resolution, 8 ch.)
 - 1 GS/s (12 bit resolution, 4 ch.)
 - (Digital) Frame Grabber for Cameras (GbE / CameraLink)
- Signal Processing
 - FPGA
 - DSP
 - CPU
 - GPU
- Communication Links
 - PCI express (PCIe)
 - Gigabit Ethernet (GbE)

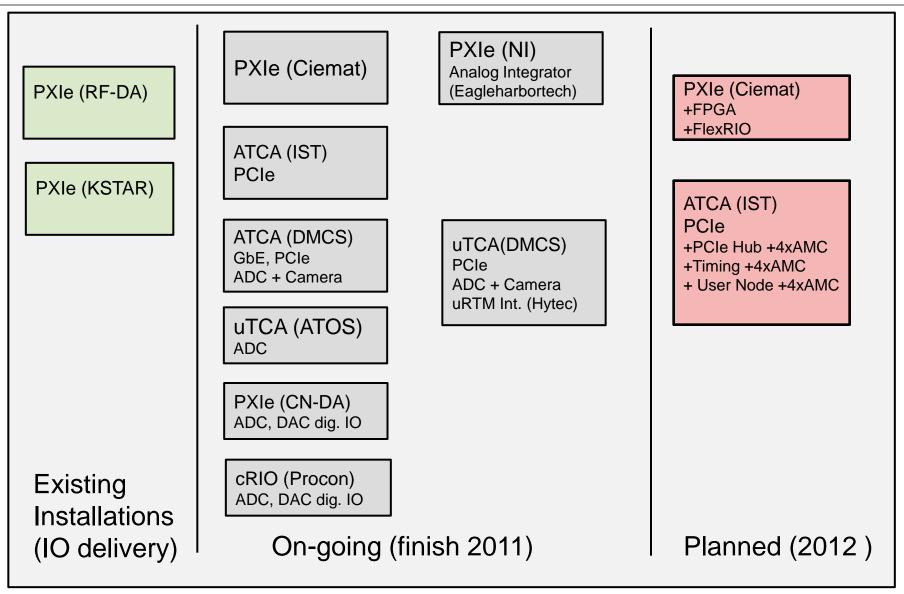
Note: Covers most diagnostics fast controller needs

Diagnostics IO Needs


Measurement Group	Signal Conditioning	Data IO	Signal Processing in Plant	Signal Processing in PCS
Magnetics	Chopper Amplifier (low offset)	1400 ADC (1 MS/s) 240 ADC (10 MS/s)	FPGA / GPU / CPU	GPU/CPU
Dosimetry and Fusion Products	Custom	50 ADC (100 MS/s)	FPGA / CPU	GPU/CPU
VIS/IR Cameras	Built-in Camera Functions	24 cameras (1 kHz frame rate)	FPGA / CPU	NA
Optical (ex. LIDAR)	Custom	150 ADC (20 GS/s)	FPGA/GPU	NA
Imaging Spectroscopy	NA	~ 200 cameras / Detector arrays	FPGA / CPU	GPU/CPU
Other spectroscopy and neutral particle analyzer	COTS Spectrometers	Custom	FPGA / CPU	GPU/CPU
Bolometers	Bias + Amplifier	~500 ADC (1 MS/s)		GPU/CPU
Microwave	RF/Microwave Back End	~100 ADC(1 GS/s) ~100 ADC (10 MS/s)	FPGA / CPU (Teraflop computing)	GPU/CPU
(Langmuir) Probes	Preamplifier	~300 ADC (1 MS/s)	CPU	GPU/CPU
Integration System (Port Plugs)	Amplifier/Filter	~100 ADC (1 MS/s)	CPU	NA
Engineering Systems	Amplifier/Filter	~100 ADC (1 MS/s)	CPU	NA

Diagnostics Data Rates (Archiving)

Measurement Group	Data IO	Raw Data Rate (Gbyte/sec)	Processed Data Rate (Gbyte/sec)	Storage/Pulse (GB in 1000s)
Magnetics	1400 ADC (1 MS/s) 240 ADC (10 MS/s)	2.8 4.8	0.056* 0.48*	56 480
Dosimetry and Fusion Products	50 ADC (100 MS/s)	10*	< 0.001	10000 (?)
VIS/IR Cameras	24 cameras (1 kHz frame rate)	50 (uncompressed)	0.5/5* (normal / event)	500+
Optical (ex. LIDAR)	150 ADC (20 GS/s)	0.015*	< 0.001	15
Imaging Spectroscopy	~ 200 cameras / Detector arrays	20*	20* < 1	
Other spectroscopy and neutral particle analyzer	~300 ADC (100MS/s)	60*	< 1	60000 (?)
Bolometers	~500 ADC (1 MS/s)	1	0.05*	50
Microwave	~200 ADC(1 GS/s) ~200 ADC (10 MS/s)	0.2*	0.2*	400
(Langmuir) Probes	~300 ADC (1 MS/s)	0.6	0.6*	600
Integration System (Port Plugs)	$\sim 100 \text{ AD}(1 \text{ MS/s})$ 0.2 0.2		0.2*	200
Engineering Systems	~100 ADC (1 MS/s)	0.2	0.2*	200



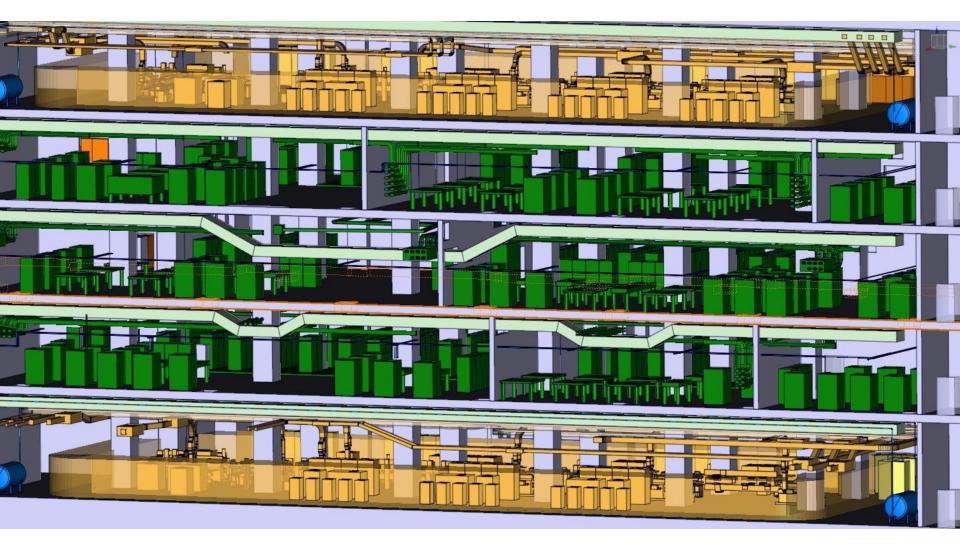
First Estimate of ADC needs for Diagnostics

LLRF 2011, Hamburg, Germany, Oct. 17-20, 2011

Fast Controller R&D Programs (Prototyping)

Fast Controller Selection Criteria (in progress)

Fast Controller Formfactor →	PCIe/PXIe	μTCA/μRTM	ATCA
General features / functionality :			
Timing (timing receiver (clock and trigger) / distribution / hardware time stamping)			
Applicable to instrumentation			
Signal conditioning support			
High Availability (up to 99.99 %)			
Magnetic field environment (5 mT and up to 150 mT)			
Radiation (up to 10e5 n / cm**2 / sec)			
EMI shielding / EMC compatibility			
Shelf management			
Health management support (complete system)			
Scalability (IO channels and processing power)			
Modularity (IO, signal processing, comm. links etc.)			
Hardware:			-
Analog IO : fast / medium / slow ADCs			
Camera Interface: Camera Link / GbE			
Signal Processing: FPGA / GPU / CPU			
Network : PON / SDN / TCN			
Software:			
EPICS driver (library)			
Linux system driver			
Application programming tools			
FPGA (Virtex 5 and 6)			
GPU (TESLA)			
IOC (CPU)			
Other:			
Cost			
Commercial availability (short / long-term)			

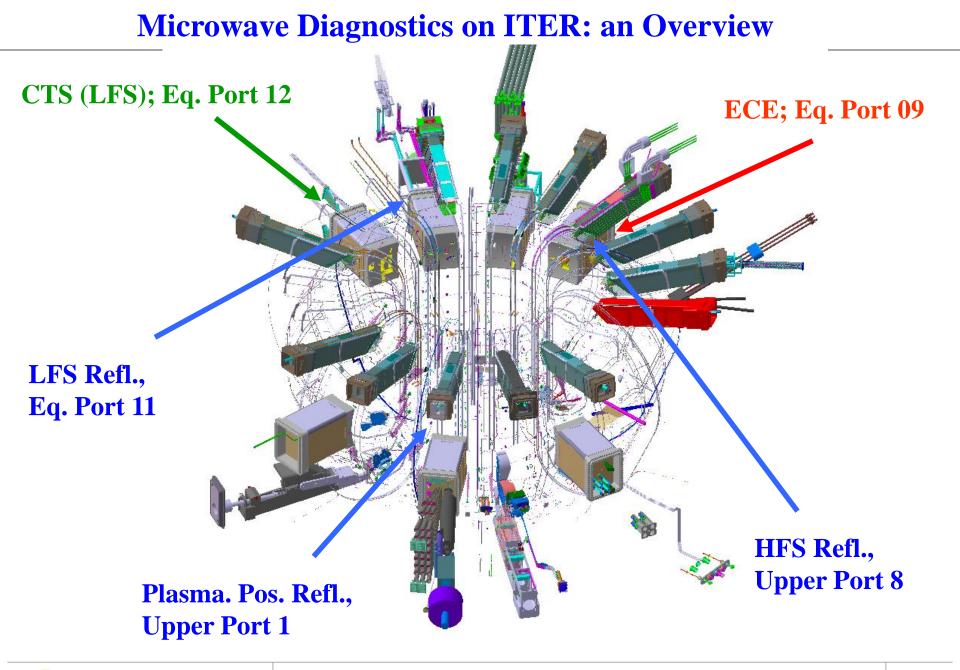

Product Expected from Prototyping

- Complete example systems close to plant system needs
 - To be included in CODAC core system
- Hardware in fast controller catalog
 - Chassis/shelf (including health monitoring)
 - Boards (ADC, Camera Interface, Timing receiver, Carrier boards)
 - Network Interfaces
- Software
 - Linux drivers for boards in fast controller catalog
 - EPICS device support for boards in fast controller catalog
 - Prototype examples included in CODAC core system (Application software, configuration data (SDD), HMI (Boys screens)
 - Source code in SVN

Documention in IDM

- Cubicle installation and wiring, thermal and fire load studies
- User and developer manuals
- Other design documents
- FAT and SAT reports

Diagnostic Hall for Instrumentation (700 Cubicles)



Microwave Diagnostics

LLRF 2011, Hamburg, Germany, Oct. 17-20, 2011

Introduction: Microwave Diagnostics on ITER - responsibilities

- ECE: Equatorial port 09, Front end: US; Transmission: IN; Receivers: IN and US
- **Reflectometers:** <u>HFS</u>, in-vessel and Upper Ports 08, 09 and 17: RF

<u>LFS</u>, EP11: US

<u>Plasma Position</u>, in-vessel and UP01, 14 and EP09: EU

• Collective Thomson scattering: LFS front end: EU

Integration of all these diagnostics into ITER, taking into account all necessary interfaces, is a challenge

HFS Reflectometry Role

SRD	Parameter Operational	Original	Specification
Contribution	role	measurement	parameter
1 Primary	1b Advanced Plasma	Electron Density	Core Electron
	Control	profile	Density profile
1 Primary	2 Evaluation and Physics	H-mode, ELMs and	ELM density
	Studies	L-H mode	transient
1 Primary	2 Evaluation and Physics	High Frequency	TAE dn/n
	Studies	Instabilities (MHD,	
		NTM, TAE dn/n,	
		dT/T)	
3 Suppl.	1a2 Basic Machine Control	Line-averaged	Int(ne dl)/Int(dl)
		electron density	

The locations of the HFS Reflectometry antennas must be capable of monitoring the plasma core to fulfil the measurement requirements.

It is planned to use the same waveguides for X-mode observation in frequency band 10-98 GHz and O-mode observations in the band of 15-155 GHz.

Low-Field-Side Reflectometer

Contributions and Measurement Roles

_	ribution ary - well suited to the measurement	_	B.01	C.01	C.02	C.05	C.06	E.01	E.05	E.07	E.12	E.13	E.15	F.01	F.02	F.03	F.09	F.10
Back	Up - provides similar data to primary, but has some limitations lementary - validates or calibrates, but is not complete in itself	Diag				-					2 CXRS	3 X-Ray	5 Beam			3 Plasma		
Role 1a1 1a2 1b 2	Machine Protection Basic Control Advanced Control Physics Evaluation	Diagnostic Role	Radial Neutron Camera	Thomson Scattering (Core)	Thomson Scattering (Edge)	Toroidal Interferometer/Polarimeter	Poloidal Polarimeter	CXRS based on DNB (Core)	X-Ray Crystal Spectrometer (Core)	Radial X-Ray Camera	RS based on DNB (Edge)	Crystal Spectrometer (Survey and E	m Emission Spectroscopy	Electron Cyclotron Emission	Reflectometer (Main Plasma, LFS)	sma Position Reflectometer	Reflectometer (Main Plasma, HFS)	Interferometer (Divertor)
Meas	urement, Parameter											idge)						
6	Line-averaged electron density, default	1a2		S											S		S	
10	Plasma rotation, vpol	1b						S					S		s			
14	H-mode, ELMs and L-H mode transition indicator, ELM ne transient	2			S													S
24	Electron density profile, Edge ne	1b																
24	Electron density profile, Core ne	1b					S											S
27	High frequency instabilities, TAE dn/n	2								S				S				

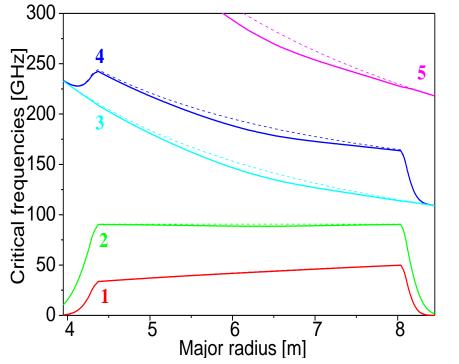
PCS Needs for Reflectometer Measurements

- ELM control (MP, BC): As a backup measurement of the amplitude and timing of ELMs and pellet perturbations
- Event handling (BC): Together with other measurements, as a backup measurement to distinguish L- and H-mode
- Plasma position and shape control (BC): Additional measurement of the plasma position to verify or correct drift in the magnetic measurements of the plasma boundary
- Error field control (AC): Additional measurement of n=0, 1, 2 boundary perturbations for disruption avoidance
- Density profile control (AC): Primary measurement of n_{eped}, dn_{eped}/dr, and their radial locations

china eu india japan korea russia usa

Alfvén eigenmode control (AC): Measurement of AE amplitude, γ, and radial eigenfunction

Principles and advantages of reflectometry for reactor grade tokamaks

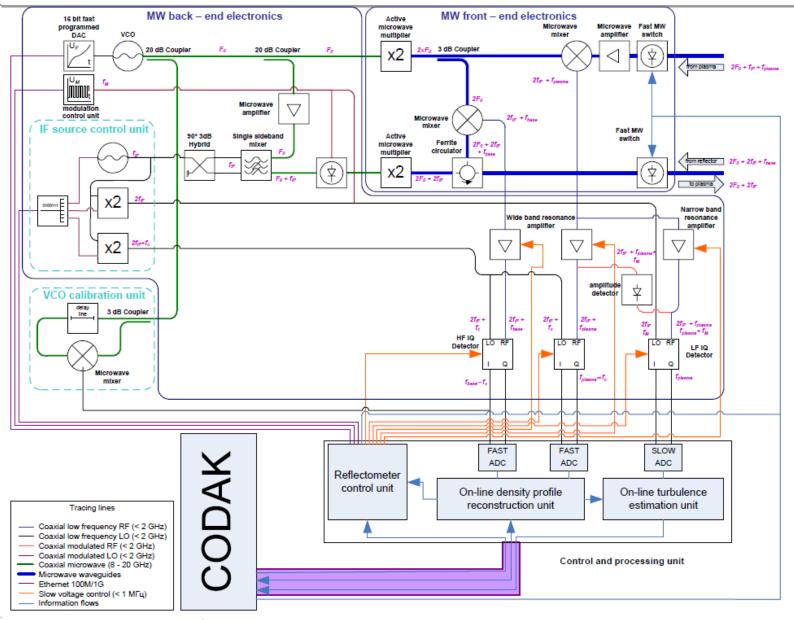

Reflectometry based on the analysis of the characteristics of reflected from critical layer mm-wave. So the phase of the received wave is determined by the integral along the wave pass.

Thus it is possible to reconstruct the density profile from the phase or time delay of the waves reflected from plasma with a set of frequencies. It is important to note that as the waves propagate along the same line the procedure of density profile recovering from the integral equation does not need any assumptions about the symmetry as in interferometry.

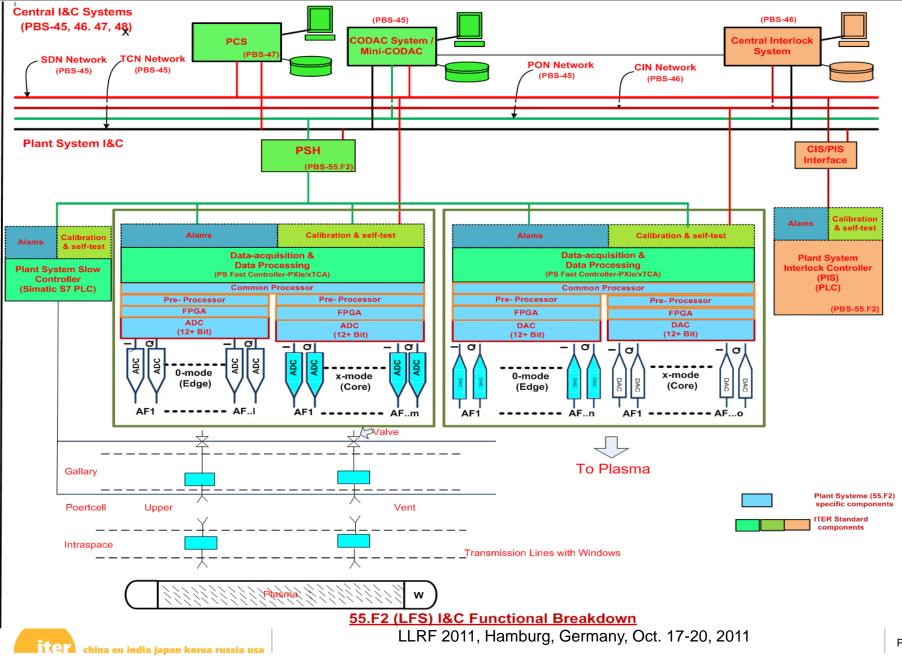
The fluctuations of the reflected wave gives important information about plasma density fluctuations. As the typical wavelength is in mm range, reflectometry is very sensitive to small density fluctuations.

As reflectometry measures the plasma properties at given poloidal and toroidal angles, it enables to investigate poloidal and toroidal characteristics of turbulence and plasma position by means of probing at a number of angles.

Principle of ITER HFS Reflectometry


Two branches exist for electromagnetic wave propagation in plasma with magnetic field. -Ordinary (O) wave with electric field parallel to the magnetic field line direction. Extraordinary (X), wave with electric field perpendicular to the magnetic field line has two waves Xu and XI with cut off frequencies: Waves permittivities at high temperature should be corrected to account relativistic effect.

HFS reflectometry probes plasma from inner equator circumference of the torus in order to access to the core plasma with flat density profile and uses O and X-waves. For densities up to 3 10^{20} m⁻³ O and X-modes should use frequencies from 15 to 155 GHz and 10 – 98 GHz respectively.


Advantages of HFS reflectometry: ability to access core plasma at flat density profile; relatively low frequencies (higher launched power-higher Signal/Noise, less influence of turbulence); lower turbulence level at HFS (higher measurement accuracy); small relativistic corrections; low plasma emissivity at the used frequencies (higher S/N).

Front-end Electronics for HFS

I&C Functional Breakdown for LFS Reflectometry

DAQ and Signal processing Requirements for LFS Reflectometry

	ADC / other I/O / comm	Processing	Comm
 Profile Reflectometer 1. Data acquisition (IF) 2. Real time measurement 3. Microwave source ctrl. 4. Monitor data 	30 x 500 MS/s (12+bit) Commlink (DAQ → PROC) few DAC / dig. I/O 30 x 250 MS/s (12+bit)	FPGA, CPU (~1 GF/1ms ?) 1.25 kS/ch.	PCle
 Doppler Reflectometer 1. Data acquisition (IF) 2. Real time measurement 3. Microwave source ctrl. 4. Monitor data 	8 x 50 MS/s (12+bit) Commlink (DAQ → PROC) Few DAC/ dig. I/O 8 x 10 MS/s (12+ bit)	FPGA, CPU	PCIe
Turbulence / MHD Reflect.1. Data acquisition (IF)2. Real time measurement3. Monitor data	60 x 50 MS/s (12+bit) Commlink (DAQ → PROC) 30 x 0.1 MS/s (12+bit)	FPGA, CPU	PCle
Power Transmission / ECH 1. Monitoring 2. ECH Protection	120 x 0.1 MS/s (12+bit) 12 x 10 MS/s (12+bit)		

Algorithms for HFS

Step	Operation	Mathematic operation		Number of ope	ration	
			+/	×/÷	>/<	funct.
1	Data vector formation	$y_j = y_j^{\text{Re}} + i \cdot y_j^{\text{Im}}, i = \sqrt{-1}$	5·10 ³	5.103	0	0
2	Data filtration using standart or adaprive filter	$y_j^{filt} = b_1 \cdot y_j + b_2 \cdot y_{j-1} + \ldots + b_{K+1} \cdot y_{j-K}$ where K is the filter order and $b_{1\ldots K+1}$ filter coefficients. 32th and higher order filter should be used	<i>K</i> · <i>N</i> 160·10 ³	(K+1)·N 165·10 ³	0	0
2*	Adaptive filter – frequency determination via Fast Fourier Transform	$Y_k = FFT(y_k), k = 15 \cdot 10^2$, for 10 windows. Sort of data to detect maximum frequency	$\frac{10 \cdot (5 \cdot 10^2)^2}{2500 \cdot 10^3} =$	$ \frac{10 \cdot (5 \cdot 10^2)^2}{=2500 \cdot 10^3} $	$ \frac{10 \cdot (5 \cdot 10^2)}{5 \cdot 10^3} $	0
3	Phase determination	$\varphi_j = \begin{cases} \arctan(y_j), if \operatorname{Re}[y_i] \ge 0\\ \arctan(y_j) + \pi, if \operatorname{Re}[y_i] < 0, \operatorname{Im}[y_i] > 0\\ \arctan(y_j) - \pi, if \operatorname{Re}[y_i] < 0, \operatorname{Im}[y_i] < 0 \end{cases}$	up to 5 · 10 ³	0	up to 10·10 ³	5.103
4	Phase unwrap	$\Delta \varphi_{j} = \varphi_{j} - \varphi_{j-1}$ $\varphi_{j} = \begin{cases} \varphi_{j}, -\pi/2 < \Delta \varphi_{j} < \pi/2 \\ \varphi_{j} + \pi, \Delta \varphi_{j} < -\pi/2 \\ \varphi_{j} - \pi, \Delta \varphi_{j} > \pi/2 \end{cases}$	up to 10-10 ³	0	5.103	0
Total			up to $0.2 \cdot 10^6$ (2.7 · 10 ⁶)	up to 0.2·10 ⁶ (2.7·10 ⁶)	Up to 20.10 ³	5·10 ³

- Adaptive filter could significantly improved signal-to-noise ratio.

Algorithms for HFS

2.2. Single frequency band and polarization processing.

Step	Operation	Mathematic operation	Number of operation			
		the second se	+/	×/÷	>/<	funct.
1	Plasma input determination	$\varphi_{j}^{plasma} = \varphi_{j}^{bistatic} - \varphi_{j}^{monostatic}$	5·10 ³	5.103	0	0

2.3. Multi channel data processing.

Subscripts determine the time step, superscripts – the frequency bands.

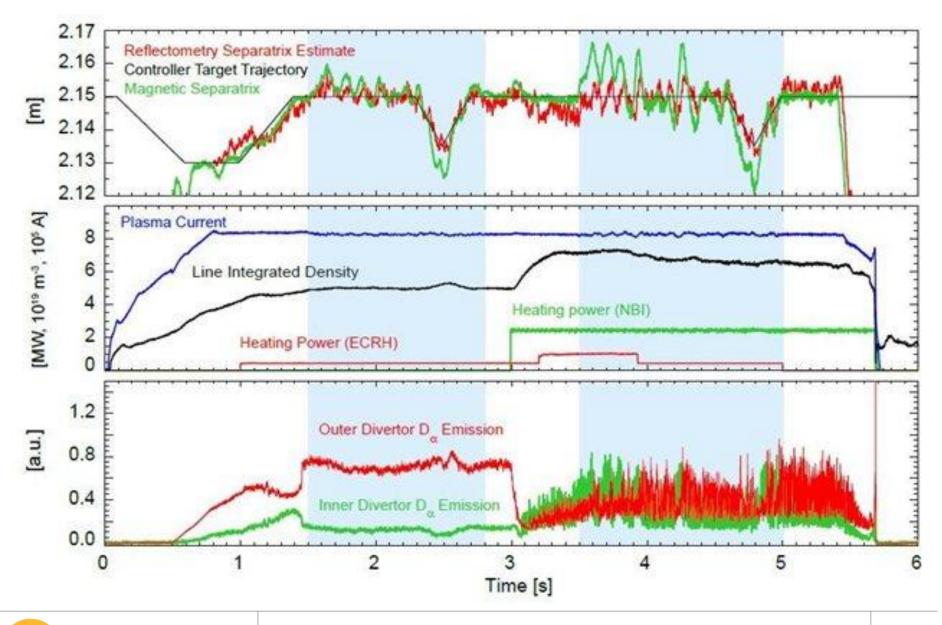
Step	Operation	Mathematic operation		Number of ope	ration	
		-40	+/	×/÷	>/ <	funct.
la	Linear data approximation for lowerst O- mode frequency	$k = \frac{\langle F \cdot Y \rangle - \langle F \rangle \cdot \langle \varphi \rangle}{\langle F^2 \rangle - \langle F \rangle^2} \bigg _{s}, \langle s \rangle = \frac{1}{L} \sum_{j=1}^{L} s_j, L = 1050$ $b = \langle \varphi \rangle - k \cdot \langle F \rangle$	$4 \cdot L + 3 = 0.2 \cdot 10^3$	L+7 = 0.05 · 10 ³	0	0
2	Polynom approximation at lower frequency /	$\varphi^{0}(F) = af^{\alpha}; \varphi^{0}(\langle F \rangle) = \langle \varphi \rangle; \frac{\partial \varphi^{0}(F)}{\partial F} = k$	¹ gatin acces	0.1·10 ³	0	0.1.103
	data combining	$\alpha = \left(1 + \frac{b}{k\langle F \rangle}\right)^{-1}; a = \frac{\langle \varphi \rangle}{\langle F \rangle^{\alpha}}$ $\varphi_j^0 = \varphi^0(F_j), j = 110^2$	itorensy stat The cetime	7 200 page (101-2 ac.7	Ye.	ir mai L-3, sofi
_		$\varphi_{j}^{\circ} = \varphi^{\circ}(F_{j}), j = 110^{2}$				

Algorithms for HFS

2	Phase combining	$\begin{pmatrix} \varphi_j^0 \\ \varphi_j^1 + \Delta \varphi^{12} \end{pmatrix}$	$5 \cdot 5 \cdot 10^3 = 25 \cdot 10^3$	0	0	0
		$\varphi_{j} = \begin{cases} \varphi_{j}^{1} + \Delta \varphi^{12} \\ \dots \\ \varphi_{j}^{5} + \Delta \varphi^{54} \end{cases}$				
		where $\Delta \phi^{ij}$ is the offset between frequency bends				
3	Bottolier- Curtet profile reconstruction for O-mode	$S_{j+1} = F_{j+1} \cdot \sum_{q=1}^{j-1} \left(\frac{N^{O}(r_{q}, F_{j+1}) + N^{O}(r_{q+1}, F_{j+1})}{2} \right) \cdot (r_{q} - r_{q+1})$	2·L·(L+4) = 1.25·10 ⁹	2·L·(L+4) = 1.25·10 ⁹	0	0
		$ -F_{j} \cdot \sum_{q=1}^{j-1} \left(\frac{N^{o}(r_{q}, F_{j}) + N^{o}(r_{q+1}, F_{j})}{2} \right) \cdot (r_{q} - r_{q+1}) $ $ r_{j+1} = r_{j} + \frac{2(c/2 - S_{j+1})}{F_{j+1}N(r_{j}, F_{j+1})} $				
		for the data length $j = 1L$ points, L=5.5.10 ³ =25.10 ³				
3*	O-mode plasma permittivity calculation	$N^{O}(r_{q},F_{j}) = \sqrt{1 - \frac{\omega_{p}^{2}}{\omega^{2}}} = \sqrt{1 - C\frac{n_{e}}{F_{j}^{2}}}$	$2 \cdot L \cdot (L+1) =$ = 1.25 \cdot 10 ⁹	$3 \cdot 2 \cdot L \cdot (L+1)$ = = 3.75 \cdot 10 ⁹	0	$2 \cdot L \cdot (L+1) =$ = 1.25 \cdot 10 ⁹
4	Bottolier- Curtet profile reconstruction for 2 mode	$S_{j+1} = F_{j+1} \cdot \sum_{q=1}^{j-1} \left(\frac{N^{X}(r_{q}, F_{j+1}) + N^{X}(r_{q+1}, F_{j+1})}{2} \right) \cdot (r_{q} - r_{q+1}) - F_{j} \cdot \sum_{i=1}^{j-1} \left(\frac{N^{X}(r_{q}, F_{j}) + N^{X}(r_{q+1}, F_{j})}{2} \right) \cdot (r_{q} - r_{q+1})$	2·L·(L+4) = 1.25·10 ⁹	$2 \cdot L \cdot (L+4) =$ 1.25 \cdot 10 ⁹	0	0
		$r_{j+1} = r_j + \frac{2(c/2 - S_{j+1})}{F_{j+1}N^{X'}(r_j, F_{j+1})}$		-		
4"	X-mode plasma permittivity calculation	for the data length L points, L=5 $\cdot 5 \cdot 10^3 = 25 \cdot 10^3$ $N^X(r_q, F_j) = \sqrt{\frac{\left(1 - \frac{\omega_p^2}{\omega^2}\right)^2 - \frac{\omega_H^2}{\omega^2}}{1 - \frac{\omega_p^2}{\omega^2} - \frac{\omega_H^2}{\omega^2}}} = \sqrt{\frac{\left(1 - C_1 \frac{n_e}{F_j^2}\right)^2 - C_2 \frac{H_j^2}{F_j^2}}{1 - C_1 \frac{n_e}{F_j^2} - C_2 \frac{H_j^2}{F_j^2}}}$	$4 \cdot 2 \cdot L \cdot (L+1)$ = 2.5 \cdot 10 ⁹	15·2·L·(L+1) = 9.38·10 ⁹	0	2·L·(L+1) = = 1.25·10 ⁹
	Q-mode		2.5.109	6·10 ⁹		1.25.109
	X-mode	100	3.75.10	10.63.10		1.25.10

- operations are required for the correspondent main step.

Plasma Position Control Using Microwave Reflectometry


Magnetic measurements are usually the prime diagnostic for inferring the position and shape of tokamak plasmas; indeed all present devices base their position feedback control on this information.

In a new approach, the microwave reflectometry is used to track the position of the plasma boundary in real time using dedicated algorithms and the a priori knowledge about typical edge density profile shapes. The estimation of the boundary density is obtained from a combination of local and line integrated density measurement (the latter coming from interferometry as well as O-mode reflectometry) which does not require any information on the magnetic equilibrium.

It has been possible to measure the position of the separatrix of the plasma in real time at a rate of 1 ms and with an accuracy of better than 1 cm.

Plasma Position Control Using Microwave Reflectometry

LLRF 2011, Hamburg, Germany, Oct. 17-20, 2011