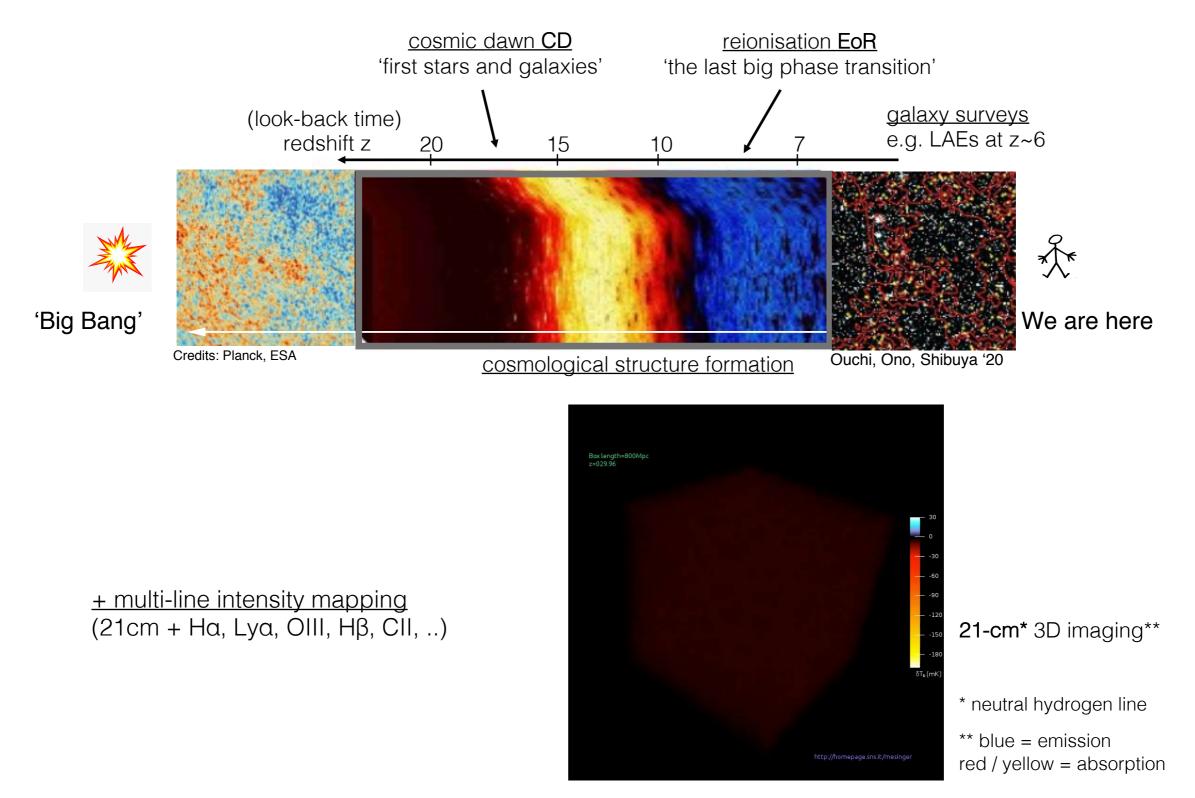
Learning the Universe: Setting sail to the first galaxies

3D imaging to track the history of the Universe



Inference from 3D tomographic cubes

Direct likelihood-free inference from 3D tomographic cubes (21cm IM)

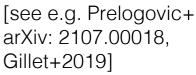
Various Options:

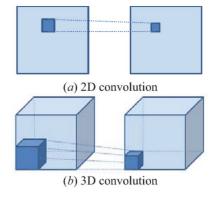
- Time series (frequency) of co-eval images
- Full 3D convolution

LSTM network

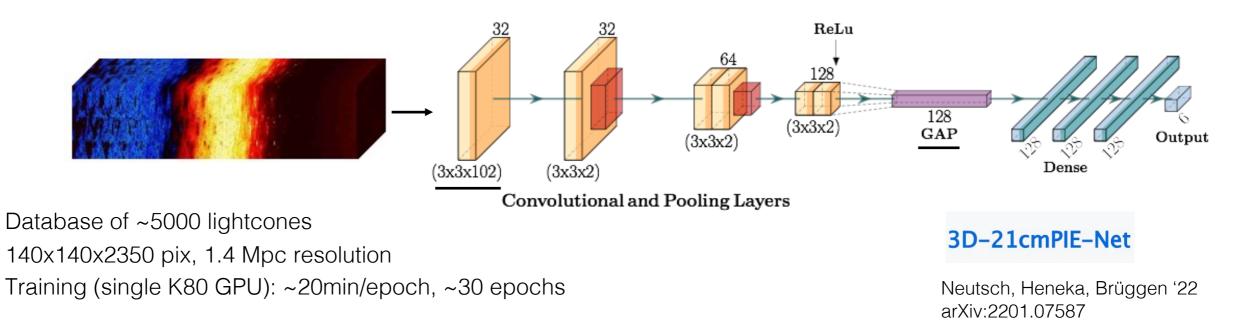
3D CNN:

Moving from 2D to full 3D convolution



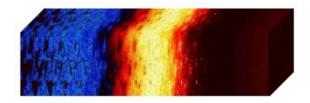


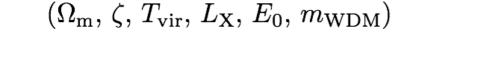
Best-performing: simple Conv3D architecture



Inference from 3D tomographic cubes

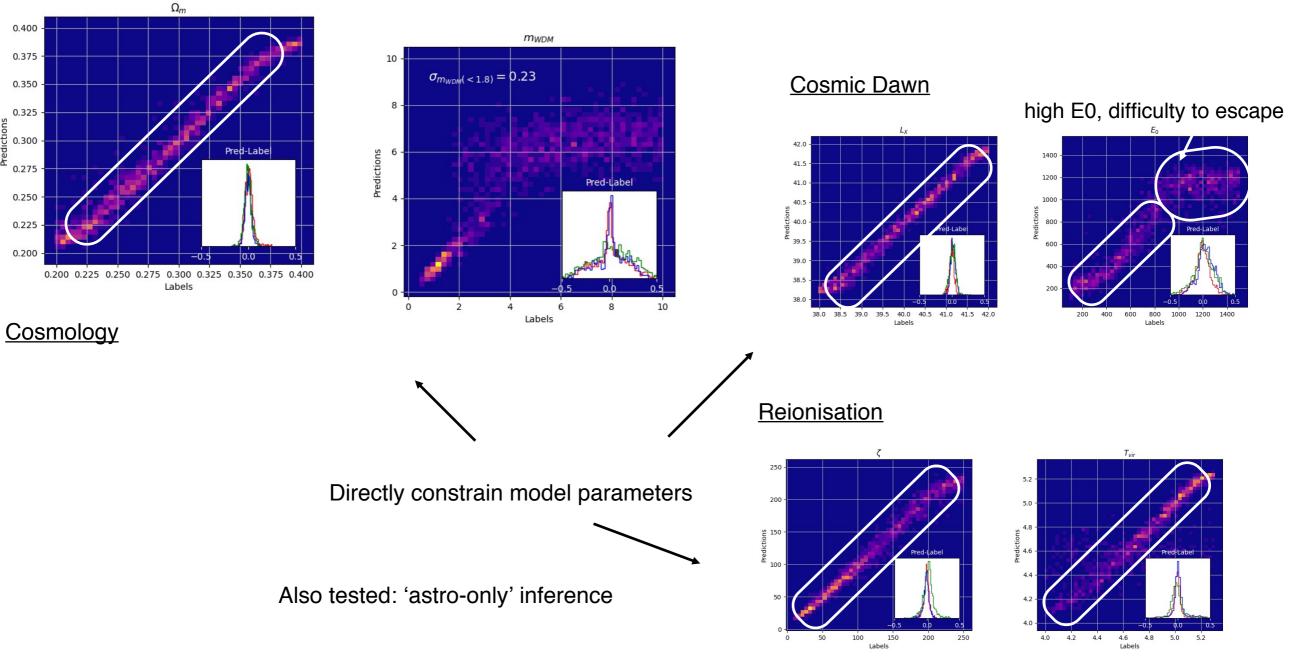
Direct likelihood-free inference from 3D tomographic mock cubes (21cm IM)





liction

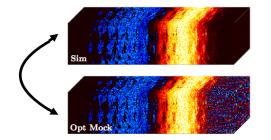
Prec

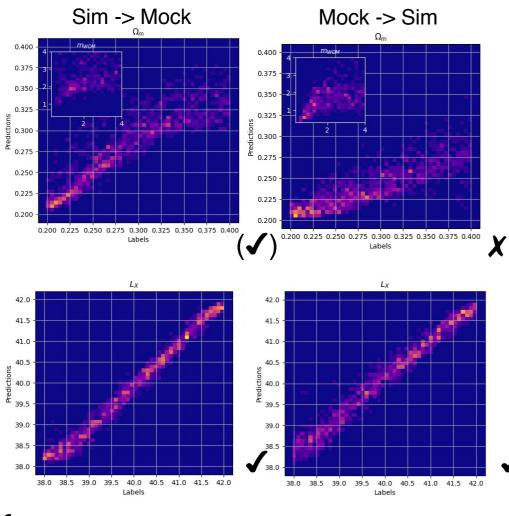


arXiv:2201.07587

Testing robustness & interpretability

1) Transfer learning with / without foregrounds

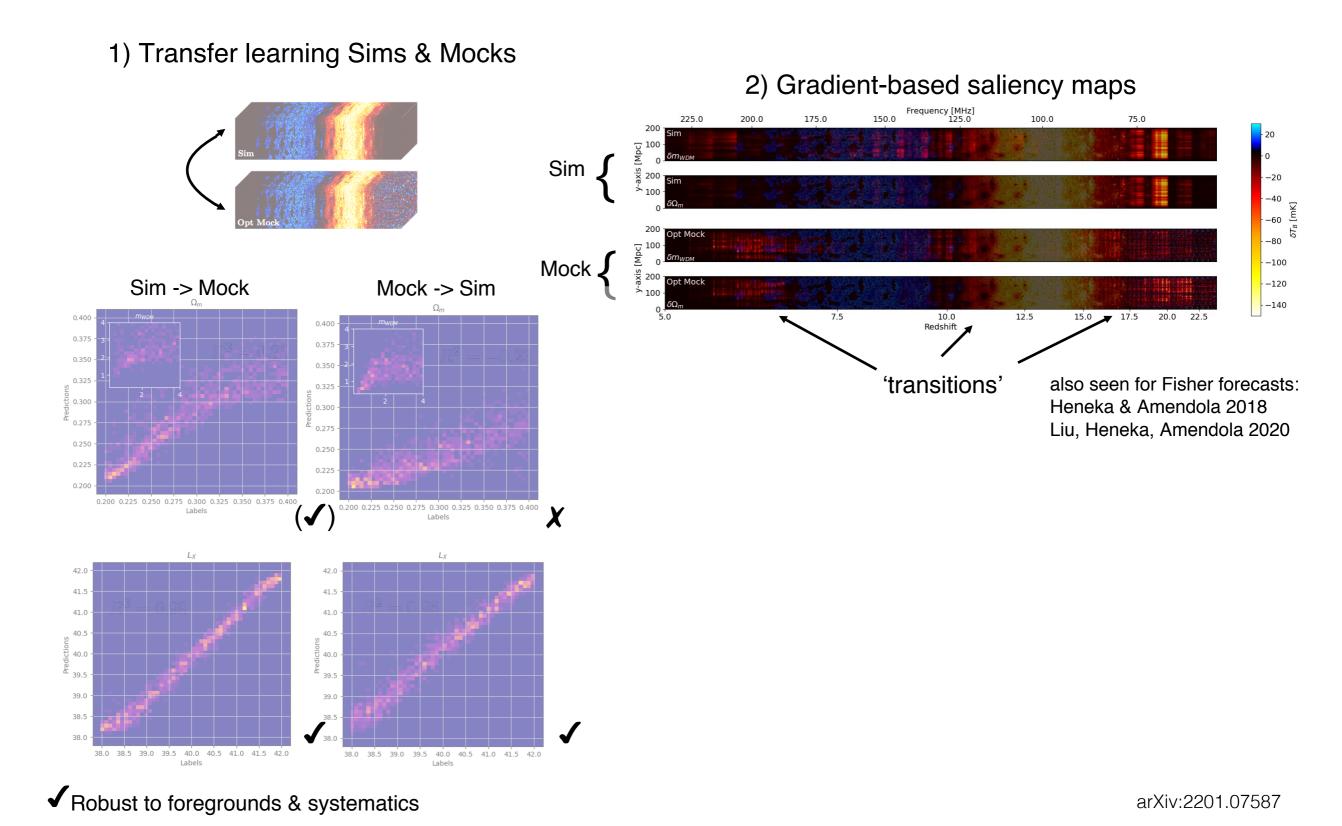




✓ Robust to foregrounds & systematics

arXiv:2201.07587

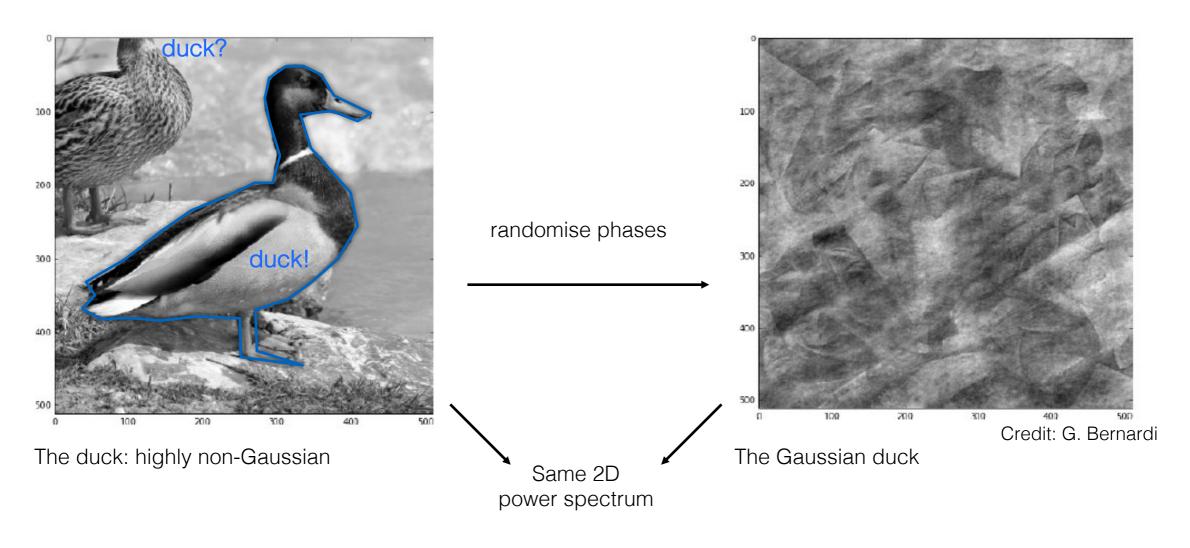
Testing robustness & interpretability



03.05.2022 ML for Astro, Caroline Heneka

Why deep learning?

The duck example of (Non-)Gaussianity

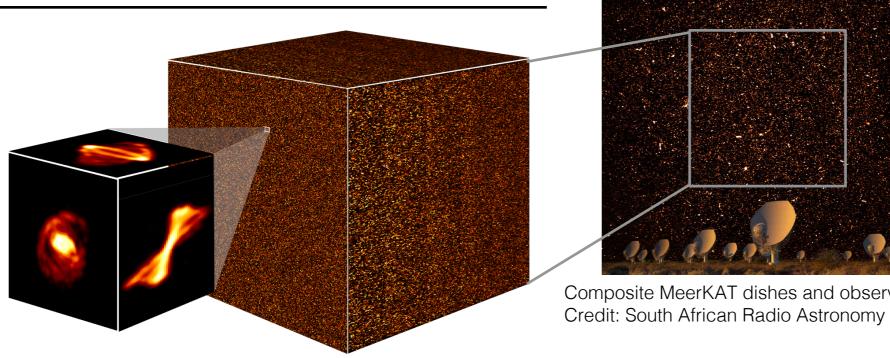


- Picks up non-Gaussian information
- Representation learning

Applications:

- 1. Detect the duck (or galaxy, or signature)
- 2. Inference (what duck? what properties? what shapes?)

Detection in 3D: SKA Science Data Challenge

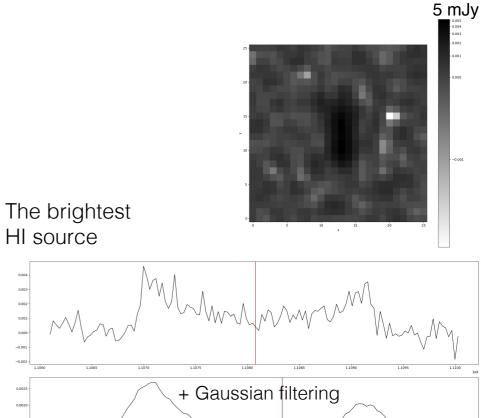


Credit: https://sdc2.astronomers.skatelescope.org/sdc2-challenge/data

Goal is both source finding and characterisation & test for new SKAO Regional Data Centers

The challenging HI sources:

- low S/N
- small spatial size
- systematics



frequency [GHz]

SKA -The Square Kilometre Array An international effort to build the

world's largest radio telescope

Expected data rate in full operation: 1 TB/s

Key science goals include: Galaxy Evolution, Reionisation, Cosmology, Astroparticles

Composite MeerKAT dishes and observations. Credit: South African Radio Astronomy Observatory (SARAO)

Detection in 3D: SKA Science Data Challenge

Machine learning and deep learning come together?

Team: Michelle delle Veneri, Andrew Soroka, Bernardo Fraga, Fedor Gobanov, Clecio de Bom, Alex Meshcheryakov

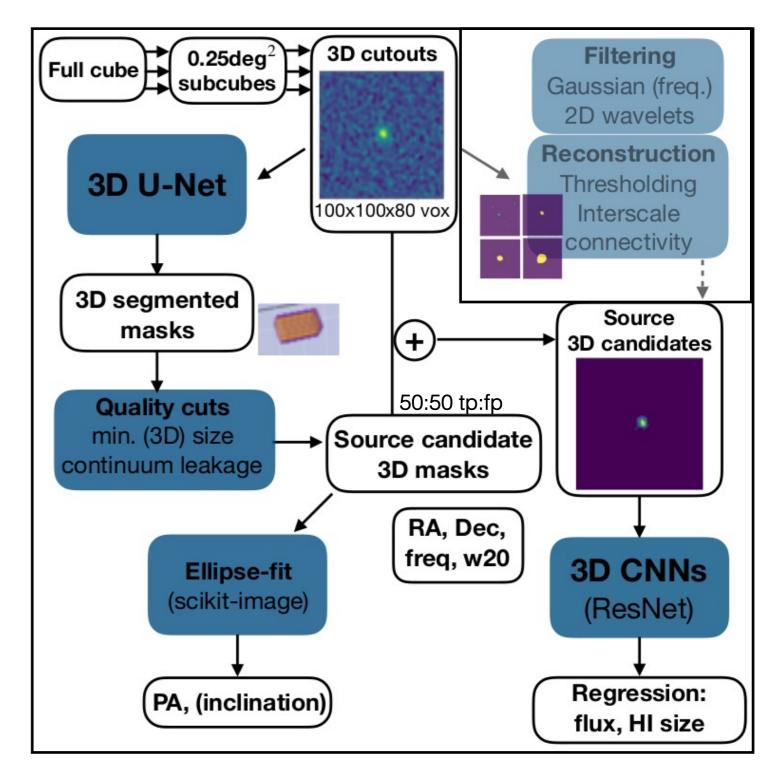
DL source detection & characterisation:

Best performing: full 3D approaches (U-Net type) Trials: 2D/3D variants of U-Net, R-CNN, inception network

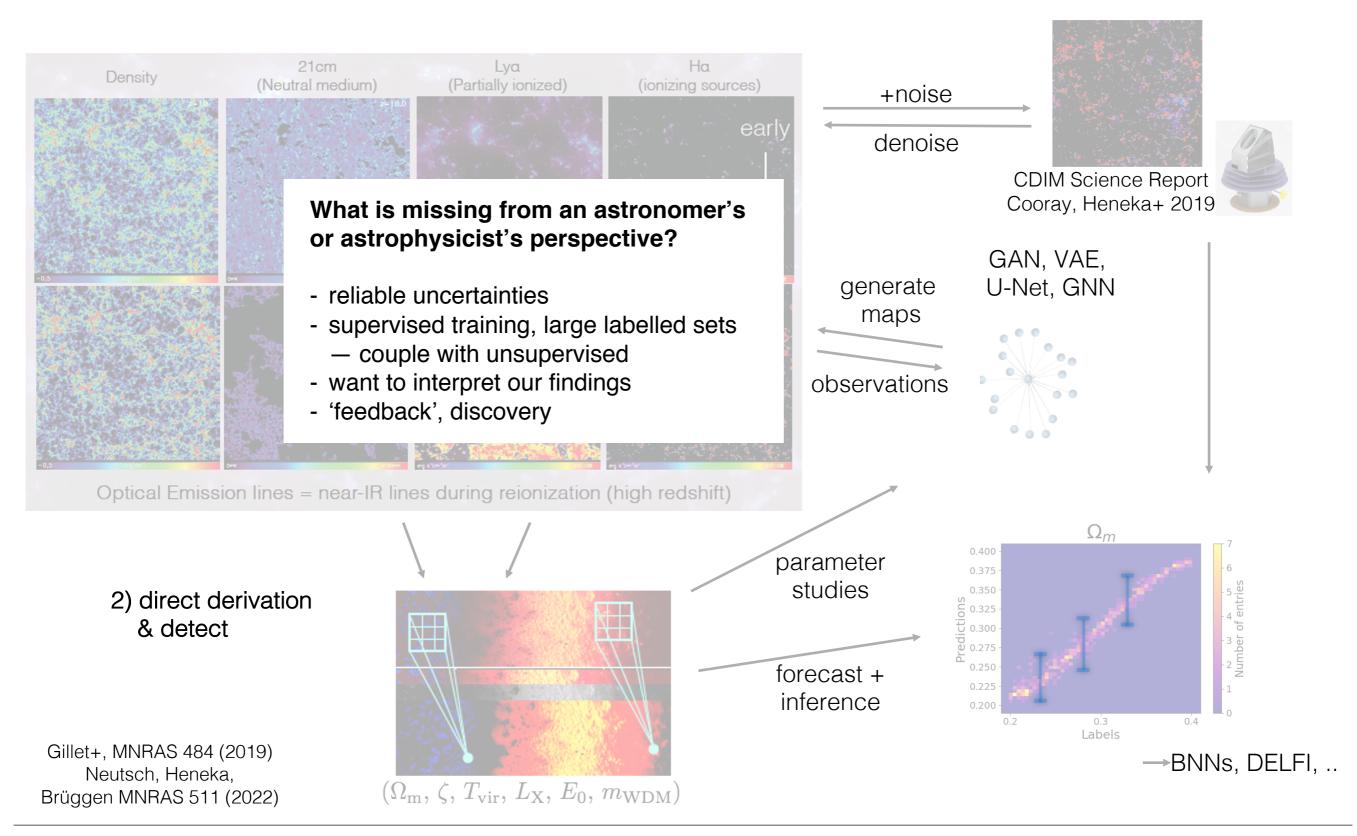
+ Trial source detection baseline Wavelet denoising & Multi-scale model

Pitfalls & Take-aways:

- Pre-processing, noise model(s)
- High sparsity
- Choice of training set
 - -> pre-training, let the network choose?
- Multi-step and/or ensemble decision

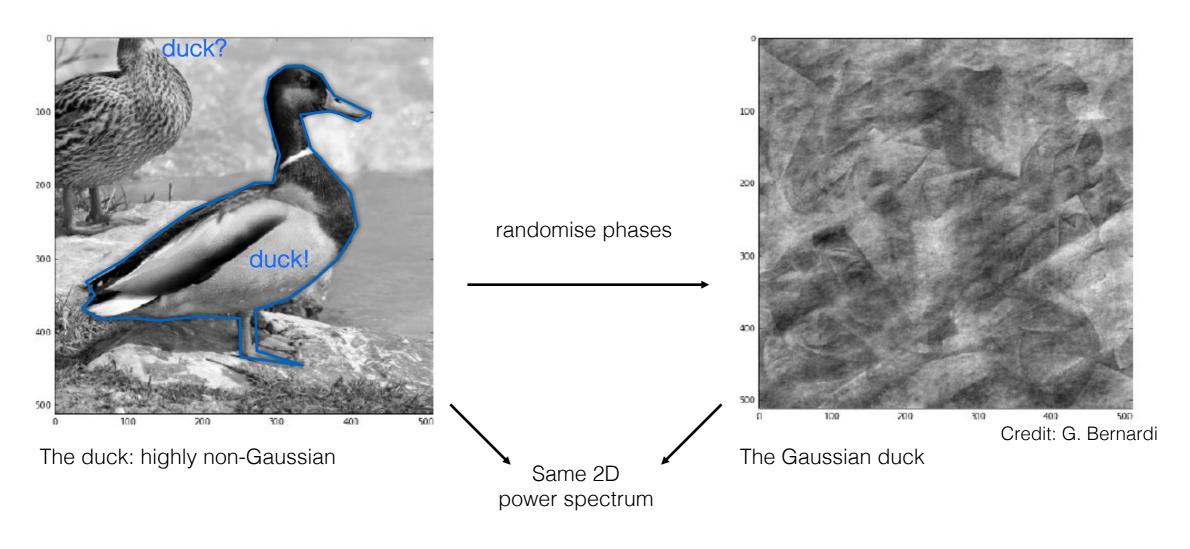


A scientific life-cycle of 3D (cosmic) inference



Why deep learning?

The duck example of (Non-)Gaussianity



- Picks up non-Gaussian information
- Representation learning

Applications:

- 1. Detect the duck (or galaxy, or signature)
- 2. Inference (what duck? what properties? what shapes?)

Deblending.. in Astrophysics

Goal: 'Good' photometry for surveys with high blended fraction - avoid bias!

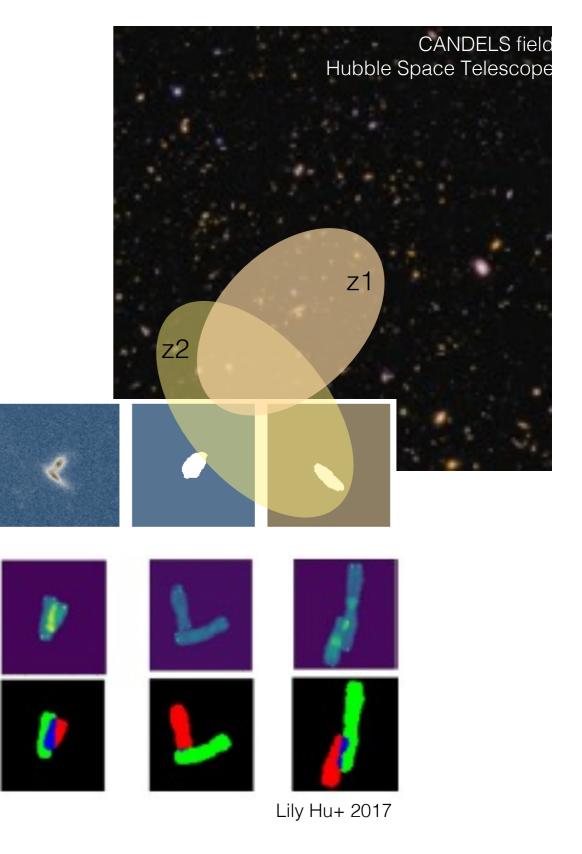
Galaxy morphology

Challenge: Galaxies are 'transparent'

Deblending.. in Biology

Goal: Separate e.g. DNA for for medical diagnostics, drug development, and biomedical research

Similar challenge: Overlapping chromosomes are mostly transparent



Deblending.. in Astrophysics

Goal: 'Good' photometry for surveys with high blended fraction - avoid bias!

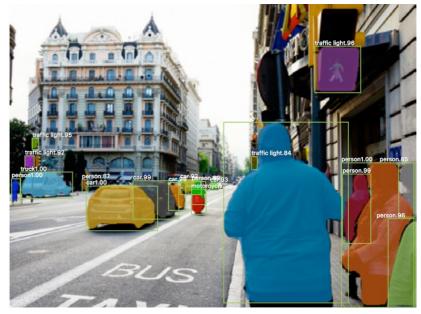
Galaxy morphology

Challenge: Galaxies are 'transparent'

Deblending.. in Biology

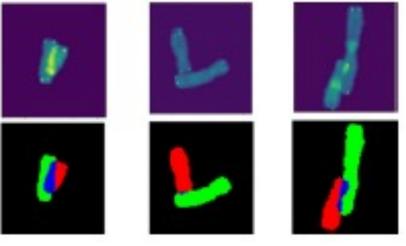
Goal: Separate e.g. DNA for for medical diagnostics, drug development, and biomedical research

Similar challenge: Overlapping chromosomes are mostly transparent .. for Al



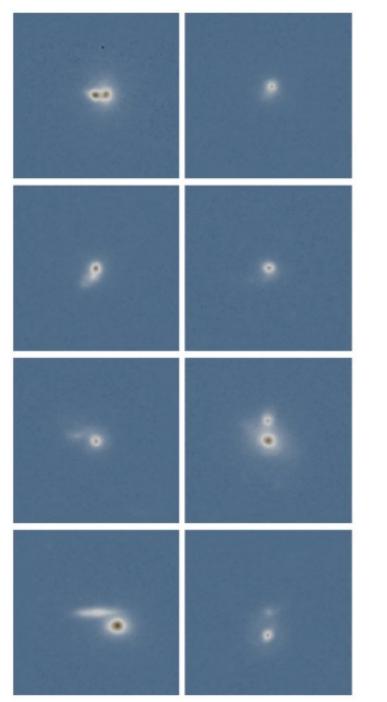
https://medium.com/@umerfarooq_26378/fromr-cnn-to-mask-r-cnn-d6367b196cfd

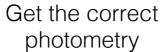
Another challenge: Object detection



Lily Hu+ 2017

Goals for our method

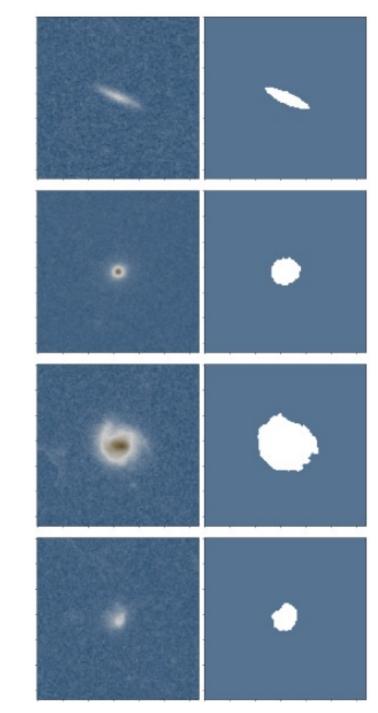




..and do so bias-free

Derive masks

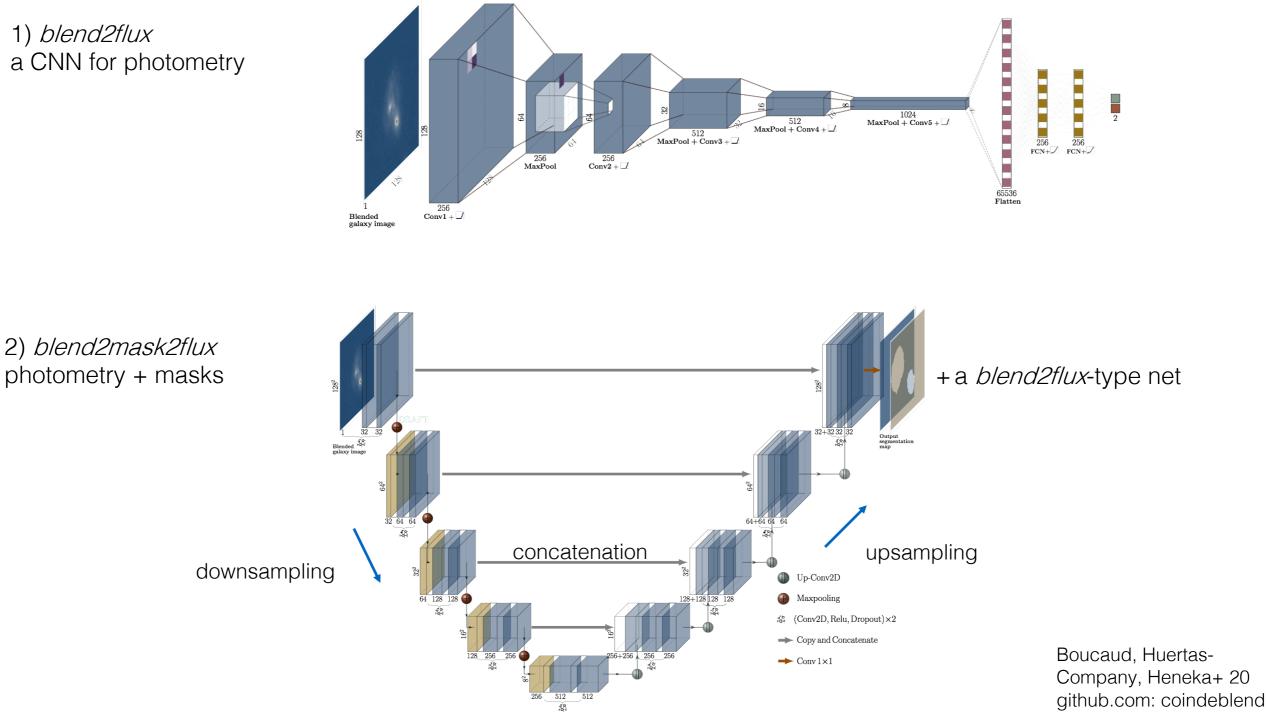
COIN -Cosmostatistics Initiative A worldwide endeavour to create an interdisciplinary community around data-driven problems in Astronomy

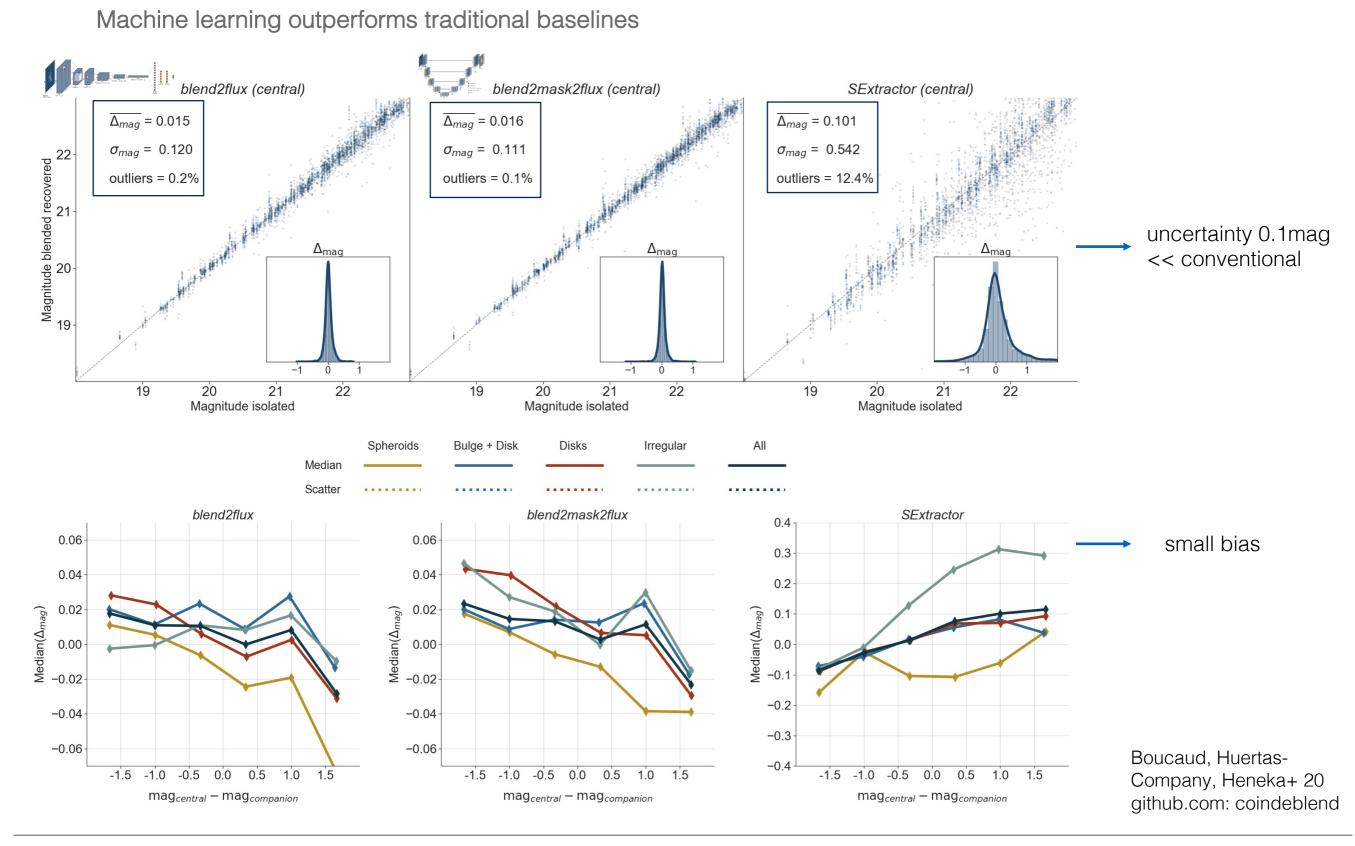


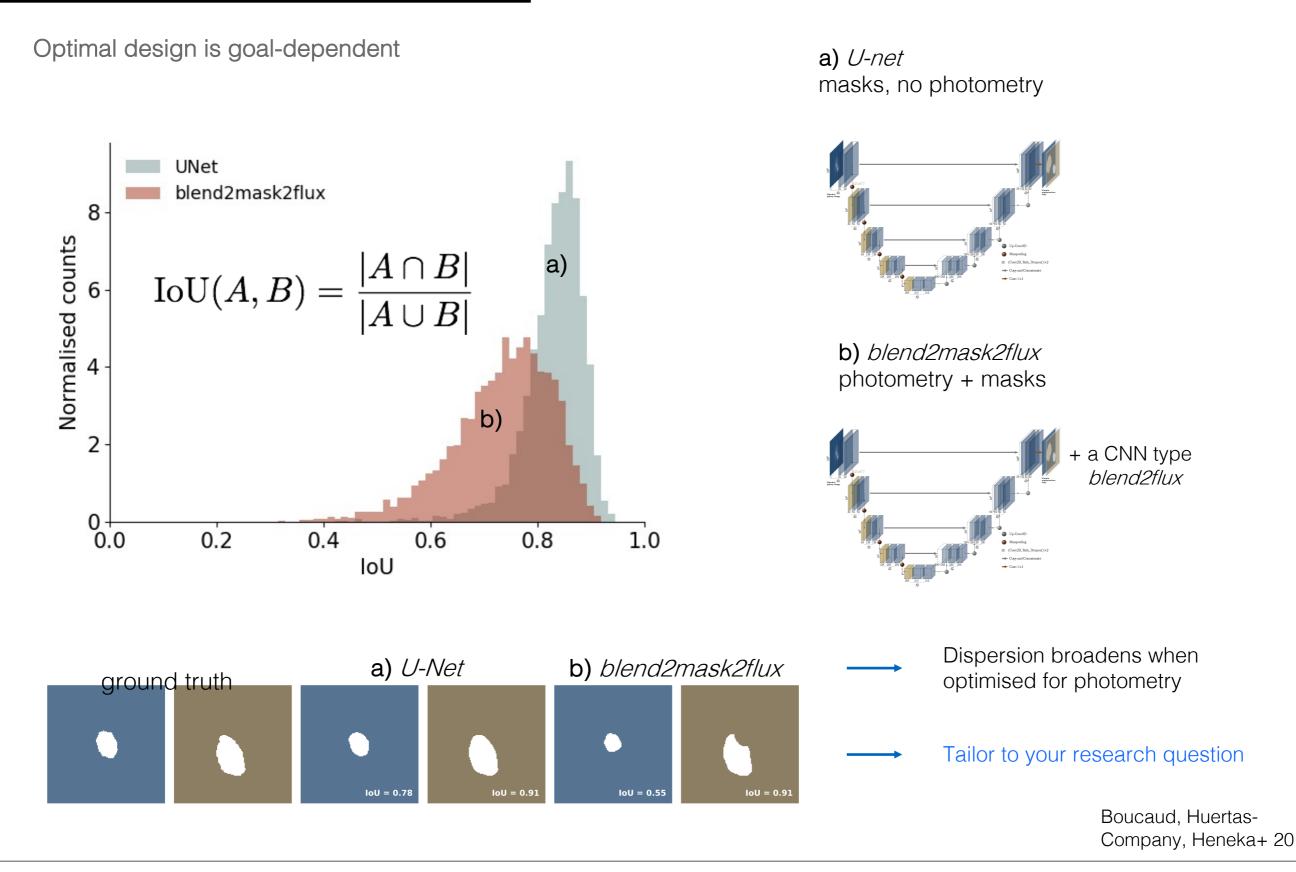
Boucaud, Huertas-Company, Heneka+ 20

For photometry, we let two architectures compete:

1) blend2flux a CNN for photometry

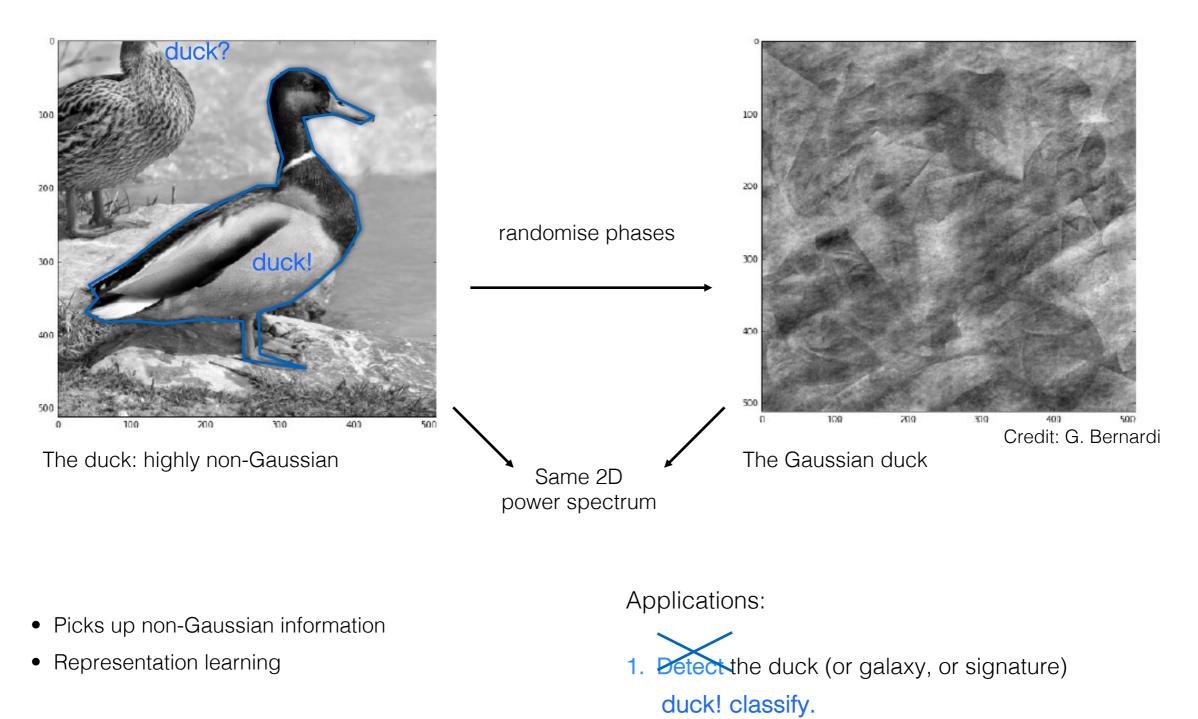






Why deep learning?

The duck example of (Non-)Gaussianity



Classification in 1D: Spectroscopy

Building a classifier for 4MOST

- 5-year survey
- wide-field, fibre-fed, optical spectroscopy
- on ESO's 4-m-class telescope VISTA
- 2.5-degree diameter field-of-view, 2436 fibres
- HRS R \approx 18000 21000, LRS R \approx 4000 7500
- 20mio. (LRS), 3mio. (HRS) sources

Confusion Matrix 14.29 1.54 0.0 AGN 10.29 88.89 0.82 0.0 galaxy 60 Frue label 40 5.56 0.93 91.67 1.85 050 20 0.35 1.77 0.0 97.87 star Predicted labe

Classification tasks:

- **Basic target classification.** Classes: star, galaxy, AGN, unknown.
- Galactic source classification.
 Sub-classes matching galactic pipeline

 (as of now) FGKM, OBA, WD sub-pipelines
 supplement to e.g. Gaia metadata based decision
- Extra-galactic.
- Feedback on a) targets, b) 'unknown' class Currently set-up in galactic:

4MOST explorer t-SNE (Gregor Traven, Gal Matijevic) arXiv: 1612.02242

Probabilistic multiclassifier also: lowres vs. highres (low S/N vs. high S.N)

Probabilistic multiclassifier II (sub-classes)

- a) match with expectation
- b) clustering, dimensionality reduction