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* Augmenting physical knowledge with Machine Learning
* Methods and models

e Quantitative characterization of phase transitions with Machine
Learning

* Deriving new observables with Machine Learning
* Inverting the renormalization group flow with Machine Learning
 Summary and perspectives
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Motivations

* First-principle studies of phase transitions (using the dynamics of an order
parameter and the symmetry breaking pattern) is a well-established

 However, there are cases in which an order parameter is not known (e.g.,
QCD at finite quark mass), or the symmetry of the transition is debated
(again, QCD)

* In other cases, we would like to understand whether the transition is
driven by topological excitations (still debated for QCD)

» Topological phase transitions (currently heavily investigated in the
Condensed Matter community) do not have an obvious parameter

Can Machine Learning provide a universal tool to understand phase
transitions?
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Machine learning and the Physical Sciences

 Computational learning theory is a subfield of Artificial intelligence studies.
Many algorithms available: (deep) neural networks, support vector
machines, . ..

 Many ready-to-use libraries in a variety of programming languages: scikit-
learn, tensorFlow, Theano, . ..

* By now, Machine Learning used in various fields of Physics (High Energy
experiments, Gravitational Waves, Astronomy, String Theory, Lattice, . . .)

with various degrees of maturity

* Several investigations of Machine Learning applied to the study of phase
transition are already present in the literature



Adoption of Machine Learning in HEP
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Machine Learning for Phase Transitions

Recent and current problems investigated include

* Can a Machine Learning algorithm detect a phase transition?

* Which algorithms are “better”?

* Can we find the order parameter?

e Can we reconstruct the symmetry that drives the transition?

* To which precision can we determine the transition temperature?

* With which accuracy can we measure quantities such as critical
exponents?

e Can we see the features (e.g, topological excitations) that are relevant for
the transition?

* Can machine learning invert the Renormalisation Group flow?
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@ Popular testbed for new numerical approaches, as it has analytic solution at 7 = 0
@ Variables: spins o; = +1 distributed on a L? grid
@ Hamiltonian

HZ—jZO’iJj—hZJi, J >0 //

(is) i

|
Zy symmetry o; — —o; / / /
/

@ Partition function at temperature T / / / /
S N A
{oi==x1}

For h = 0 phase transition at 7, = = 2.2691853. ..

2
k(log(1+v/2))
@ Phase transition driven by spontaneous breaking of Z, symmetry, with order parameter

1 _ 1
m = ﬁ Z o;e BH = l7<z O'l'>
{oi==%1} i

ForL — oco,m#0OforT < T.,whilem =0forT > T,
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The Ising critical point

@ At L = oo the magnetic susceptibility has a divergence at 7.:

1 ? _
X= <<(2ijal~) =] 17Tl

@ At finite volume, the latter singularity gets smoothened down into a peak xmax(7.(L)) and

_1 t
Te(L) = Te| o< L™ v, xmax (Tc(L)) o< LV

@ Finite size scaling: extract v and v from the variation with L of xmax(7¢(L))
The other critical exponents can be derived from scaling relations

Fisher Law: vy=v(2—n),
Widom Law: vy=p06(6-1),
Rushbrooke Law: a+28+~v=2,

Josephson Law: vd=2-—«,
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Hamiltonian H=2p Z (1 _ c,-,aj>
iy \9

Second order phase transition
for g < 5, first order phase
transition otherwise

1 AR
502510g(1+\/§) g
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The self-interacting scalar field in D=2

e Action

. Zqﬁz@ R

7 7

* We fix k. = 1and find a line of critical points, depending on the ratio
AL/ug

 We consider the reference critical values

A =07,  p7 =—0.95153(16)

[D. Schaich, W. Loinaz, arXiv:0902.0045]



What is machine learning?
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CLASSICAL MACHINE LEARNING
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[Credits: https://vas3k.com/blog/machine_learning]

Predict
a number
CLASSIFICATION \
«Divide the socks by color»

REGRESS|ION

«Divide the ties by length»

Data is not Labeled
n any way

UNSUPERVISED
Divide
by similarity

ldentify sequences
CLUSTERING
«Split up similar clothing

Eind hidden
into stacks»

dependencies
D ASSOCIATION

«Find What clothes | often
wear togetherw»

DIMENS|ON ’
REDUCTION

(generalization)
«Maoke the best outfits from the given clothes»
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Problem: separate two classes of  Transformations (kernels) can be
data through a maximally requested in order to find the
separating hyperplane maximally separating hyperplane

Hyperplane (or hypersurface) identified by decision function d, whose sign identifies the class



Convolutional Neural Networks

DISORDER
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Exposing the phase structure

10 \\\\\\\\\\\\\\

0.8}
5
50.6 =T |
3 — T>T,
50.4] |
@)

0.2

) Yy Sy

* Neural Network trained on a square lattice
* Critical temperature on the triangular lattice determined at the permille level (finite size shift?)

[Carrasquilla and Melko, Nature Physics volume 13, pages 431-434 (2017), arXiv:1605.1735]
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* Precision calculations using Machine Learning



Determination of v (Ising) GR Prtysgo
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Determination of y/v (Ising)

[C. Giannetti, B. Lucini and D. Vadacchino, Nucl.Phys.B 944 (2019) 114639, arXiv:1812.06726]

Scaling of peak height of x
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Summary of other results

* Critical exponents reproduced with very good accuracy

Method T, v X2 ~v/v X2

2.26922(33)  1.004(48) 0.36 | 1.7634(68)  0.46
2.26925(11) 1 (exact) 0.3 | 7/4 (exact) 0.66
2.26968(66)  0.95(18)  0.79 | 1.733(10)  1.54
2.26954(25) 1 (exact) 0.65 | 7/4 (exact) 2.06

Reweighting

SVM

* The SVM finds the (square of the) magnetization as d
* The symmetry is encoded in the kernel transformation
* Independence of the (sensibly chosen) training temperatures
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<f>
L0000
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A Convolutional Neural Network trained on Ising 2D can locate the order-disorder transition in other spin models



Towards interpretability: activation TR [k

functions in NN &L Sueanses
4
| disordered
oot |
|
1 ordered
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Universal features distinguish ordered and disordered phases, irrespective of e.g. order of
transition
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* Machine Learning derived observables



<p(P)>
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observable NSz 2oy

NN trained away from the phase transition: § < 0.41 and § = 0.47

The probability of classification reweighted using a single point agrees with direct measurement
=) this probability is a thermodynamic observable!

T T S @ 1

|
Reweightin

N P(CNN) & . 0.9 T -3

i T 0.8 - -

- 0.18 - 0.7 T i

- 0.16 . S 05F T -

- 0.4355  0.4365 088 F /74 A Voooaf 7T ]
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| | 0
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[D. Bachtis, G. Aarts and B. Lucini, Phys.Rev.E 102 (2020) 3, 033303, arXiv:2004.14341]



symmetry-broken symmetric

) 1.0 T T T T PR
d* scalar field theory T
A 0.6 -
Vooal .
* reweight in mass parameter, u? oo L ]
’ Identlfy reglons Where phase IS Clear 0.?1.02 -1.100 -0.198 -0.196 -0.194 -0.192 -0.190 -0.88
e retrain NN using u? < —1.0 and u? > —0.9 &

-0.949

-0.9495

-0.95

-0.9505

-0.951

-0.9515

-0.952

-0.9525

-0.953

repeat finite-size scaling analysis as in 2d Ising model

pe % v/v
CNN-+Reweighting  -0.95225(54)  0.99(34)  1.78(7)

* same universality class as 2d Ising model
* critical mass in agreement with results

0.002

0.004 0.006 obtained with standard methods

1L (Binder cumulant, susceptibility)
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f(o))

DISORDER

/

/ / /I//’ Disorder
ul 40 40 4 4

Order
CONV+ReLU  MAXPOOL FC14+ReLU FC2+SOFTMAX

Can the function f act as an order parameter?

[D. Bachtis, G. Aarts and B. Lucini, Phys.Rev.E 102 (2020) 3, 033303, arXiv:2004.14341]



aen ) Prifysgol
;’ﬁ Abertawe

—————

Swansea
University

Coupling T to the Hamiltonian

Define an observable variable Y conjugated to f and write an extended Hamiltonian

Ey =E-VfY

Now f can be computed using path integral methods

1 0lmzZy ), foexp|—BE, + BV f5Y]
BV oY > _exp|—BE, + BV f,Y]

(f)

Note that Y define a new direction for reweighting and that reweighting in this
direction does not require the knowledge of E,
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Induced phase transition
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Bc 174 QY, 0
RGINN  0.44063(21)  1.01(2) Oy = 0.534(3)
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f allows access to the magnetic
critical exponent 6
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* The Inverse Renormalisation Group
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The Inverse Renormalisation Group

Purpose: generating configurations on larger lattices starting from smaller
ones near criticality with negligible computational cost

Not a new idea, e.g.

* R.H. Swendsen, Phys. Rev. Lett., 42:859—-861 (1979)

* D. Ron, R.H. Swendsen, and A. Brandt, Phys. Rev. Lett., 89:275701 (2002)
 S. Efthymiou, M.J.S. Beach, and R.G. Melko, Phys. Rev. B, 99:075113, (2019)
e S-H. Li and L. Wang, Phys. Rev. Lett., 121:260601 (2018)

K. Shiina, H. Mori, Y. Tomita, H.K. Lee, and Y. Okabe, Scientific Reports,
11(1):9617 (2021)

Our work presents the first IRG calculation for a Quantum Field Theory
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e Overcome critical slowing down T X &
* More precise calculations of observables at criticality

* Better insights on the infrared dynamics of the model

e Can grow the lattice size indefinitely

L1 =0bLg




Known problem: the RG is not invertible
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To invert the RG, we would need to grow the number of degrees of freedom,
but the process is not unique

E.g., for a blocked spin equal to +1 possibilities (majority rules) include

+1

+1

-1

+1

+1

-1

+1

+1

-1 |+

Even worse for the scalar field, e.g.

0.01

0.36

0.02

0.01

+1 | -1

-1

+1

+1

-1

-421.1

90.1

0.5

330.9

compatible with a blocked spin value 0.4
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What we mean by inverting the RG then?

* We start from a set of configuration generated via a Monte Carlo on a
lattice of size L

e Using a Machine Learning algorithm, from those we derive a set of
configurations on a lattice L' = b L (typically, b=2)

* We assume that the ensemble at L’ as distributed according to the
Boltzmann measure at L

* This enables us to compute (and to reweight!) observables at L
* Using crossing of curves, we compute critical quantities
Advantage: numerical effort done on small lattices, hence relatively cheap

Critical to the process: blocking method, ML algorithm and assumption of
Boltzmann distribution
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The blocking method

* Given a block B with generic point i, consider

so_ Siep0000) T 0000
® 7 s 00(1)) P i 0(-6(0)

* Now, set

OB = OLO(dL + o5) + d50(—0F — d5)

* This is equivalent to the majority rule in the Ising model
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Central concept: transposed convolution

Transposed convolutions
Compare

Input

Transformations

Output



More on transposed convolutions

3 1 W11
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Determining the direction of the RG flow

 Comparison with directly
simulated lattices show that
in the augmented system the
coupling flows towards the
critical point

* Plotting two different lattice
sizes (no need for direct
simulation!) the crossing
identifies an estimate for the
critical coupling
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u2
0.42 T
L=512
0.41 gt
0.4 F §
0.39 F 5
0.38 F -
0.37 } .
0.36 L
-0.9525 0.9515  -0.9505
w2
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Determining critical quantities

We can rewrite the scaling relationships for the magnetisation

m; ~ [t;|P m; ~ |t;|P

in terms of the correlation length
Tn'i - 62_5/1/ 7nj ~ é;—B/V

to obtain the operational definition of the critical exponent ratio

dm dm

B In dms | K. In Tl ’ K.

v ln% (j —1)Inbd

Similarly, from X we get /v
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Critical exponents

Method: configurations obtained with

a simulation for L=32 and IRG 76— I
augmentation up to L=512 i ::: .......... % ...... %% ...... % ...... %¥ ....... % ...... %%:
Ratios of critical exponents extracted e % .
for pairs of lattices S T T S S N R R N
0.135_— L0=32 __
Expected asymptotic approach to 5 o % % % % % _
Ising values clearly observed 0125 e e b b b5

| | | | | | | | | |
12
0 32/64 32/128 32/256 32/512 64/128 64/256 64/512 128/256 128/512 256/512

All with no critical slowing down! 1L
i
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Conclusions and Outlook

* Machine Learning offers a novel angle to look at phase transitions

* It enables precise calculations of critical properties with no assumed
knowledge on the underlying symmetry

* Machine Learning exposes nhovel observables, whose behaviour can
offer insights on the dynamics of the phase transition

* A powerful demonstrator of the potential of Machine Learning is the
Inverse Renormalisation Group

* Future work focusing on interpretability

* Related work ongoing to derive more efficient and interpretable
Machine Learning methods from Quantum Field Theories



