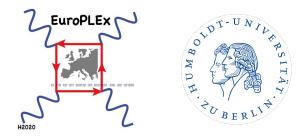
Continuum Limit of Heavy Quarks Moments and their Perturbative Expansion



Leonardo Chimirri,

Rainer Sommer

HU Berlin - DESY

leonardo.chimirri@desy.de

July 18th, 2022 HU-DESY Zeuthen Joint Lattice seminar

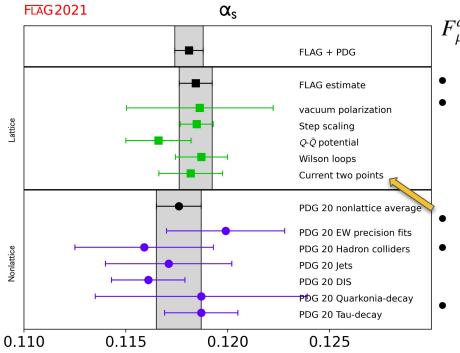
> Thanks to N. Husung, T. Korzec, S. Schaefer, B. Strassberger.

Leonardo Chimirri (DESY - HU)

Perturbation Theory and HQ Moments

The Strong Coupling

• Strong Coupling α in the Lagrangian, fundamental parameter of SM. It is an *input* of the theory.



$$\mathcal{L}_{SM} \supset \mathcal{L}_{QCD} = -\frac{1}{4} F^{a}_{\mu\nu} F^{\mu\nu}_{a} + \sum_{f=1}^{N_{f}} \overline{\psi}_{f} \left[i\partial \!\!\!/ - gA - m_{f} \right] \psi_{f}$$
$$F^{a}_{\mu\nu} = \partial_{\mu} A^{a}_{\nu} - \partial_{\nu} A^{a}_{\mu} + g f^{abc} A^{b}_{\mu} A^{c}_{\nu}$$

- Error in determination of α (or g) directly propagates in predictions. Parametric <u>uncertainty on α </u> is among <u>important</u> uncertainties for example for $H \rightarrow gg$ and $H \rightarrow bb$, for total and partial hadronic Z widths, as well as implications for EW vacuum stability and top quark physics. Study **systematics** of **"moments method"**
- Notice <u>Lattice</u> results <u>dominate</u> world <u>average</u>: $\alpha_{c}(M_{7}) = 0.1179 (10)$
- Experimental input is needed on the lattice, but this has very different systematic effects w.r.t. the one of experiments measuring α_s

Leonardo Chimirri (DESY - HU)

Perturbation Theory and HQ Moments

Moments in Momentum Space

- Moments method, pioneered by Bochkarev, de Forcrand [hep-lat/9505025] and HPQCD in 2008 [hep-lat/0805.2999].
- The observables are <u>derivatives of the vacuum polarization</u> with heavy quarks (*h*, *h'*) at CoM energy $q^2 = 0$.
- $m \leftrightarrow$ scale of observable, *m* is some generic mass, can be some PT scheme or an RGI-mass (more later).

$$\Pi(q^{2},m) = i \int d^{4}x \, e^{iq \cdot x} \langle 0 | \mathscr{T} \left\{ J^{\dagger}(x,m)J(0,m) \right\} | 0 \rangle$$

$$\mathcal{M}_{n}(m) = \frac{1}{n!} \left(\frac{\partial}{\partial q^{2}} \right)^{n} \Pi(q^{2},m) \Big|_{q^{2}=0}$$

$$[\mathcal{M}_{n}] = \text{En.}^{4-n}$$

$$\mathcal{M}_{n}(m) = \overline{m}_{\overline{\text{MS}}}(\mu)^{4-n} \sum_{i \geq 0} c_{n}^{(i)}(\mu/\overline{m}_{\overline{\text{MS}}}(\mu)) \alpha_{\overline{\text{MS}}}^{i}(\mu)$$

$$\int J_{\mu}(x) = V_{\mu}(x) \text{ (vector operator) the moment can both be calculated perturbatively and inferred from the experimental
R-ratio R(s), which is tied to physical value of quark mass: a determined at that scale.$$

$$\mathcal{M}_{n}(m) = \int \frac{ds}{s^{n+1}} R(s,m), \quad R(s,m) = \frac{\sigma_{e^{+}e^{-} \to \mu^{+}\mu^{-}}(s)}{\sigma_{e^{+}e^{-} \to \mu^{+}\mu^{-}}(s)}$$

Moments in Position Space

- Project to zero spatial momentum, then derivatives give $\int t^n G(t)$, with G(t) time-slice correlator
- Here we Wick rotate to Euclidean, *t* and *q*₀ are Euclidean

$$\Pi(q^2, m) = i \int \mathrm{d}^4 x \, e^{iq \cdot x} \langle 0| \, \mathscr{T}\left\{J^{\dagger}(x, m)J(0, m)\right\} |0\rangle \qquad \int_{-\infty}^{\infty} \mathrm{d}t \, e^{itq_0} \int \mathrm{d}^3 \vec{x} \, \left\langle J^{\dagger}(x, m)J(0, m)\right\rangle = \int_{-\infty}^{\infty} \mathrm{d}t \, e^{itq_0} G(t, m)$$

$$\left(\mathcal{M}_n(m) = \left(\frac{\partial}{\partial iq_0}\right)^n \int_{-\infty}^{\infty} \mathrm{d}t \, \mathrm{e}^{itq_0} G(t,m) \right|_{q_0=0} = \int_{-\infty}^{\infty} \mathrm{d}t \, t^n \mathrm{e}^{itq_0} G(t,m) \left|_{q_0=0} = \int_{-\infty}^{\infty} \mathrm{d}t \, t^n G(t,m)\right|_{q_0=0} = \int_{-\infty}^{\infty} \mathrm{d}t \, t^n G(t,m)$$

O.P.E.:
$$J_A(x)J_B(0) \underset{x \to 0}{\sim} \sum_l O_l C_{A,B}^{(l)}(x)$$

 $O_1 = \mathbb{1}, \ C_{A,B}^{(1)} \sim \frac{1}{|x|^6} \text{ up to logs } \implies G(t) \underset{t \to 0}{\sim} \frac{1}{|t|^3} \implies \text{ for } n > 3 \quad \exists \lim_{t \to 0} \left\{ G(t) t^n \right\} \Longrightarrow \qquad n = 4, \, 6, \, 8, \, 10, \dots$

Lattice Transcription

The **lattice transcription** of the moments is: *

$$\mathcal{M}_{n}(aM_{RGI},\sqrt{8t_{0}}M_{RGI}) = \lim_{T \to \infty, L \to \infty} a \sum_{t=-T/2r}^{t=T/2r} t^{n} \left(\frac{a}{L}\right)^{3} a^{3} \sum_{\vec{x},\vec{y}}^{L-a} \langle J(t,\vec{x},\mu_{tm})J^{\dagger}(0,\vec{y},\mu_{tm}) , r < 1$$

 $J_{PS}(x) = i\mu_{tm}\psi_h(x)\gamma_5\psi_{h'}(x)$ is <u>renormalization independent</u> in \star certain regularizations (no Z-factors!). At full twist, PCAC relation maps into exact vector current WI yielding:

$$Z_P Z_\mu = 1$$

Full twist also ensures automatic O(a)-improvement. \star

$$S_{F} = a^{4} \sum_{x} \overline{\psi}(x) \left\{ \sum_{\nu=0}^{3} \left(\gamma_{\nu} \frac{\nabla_{\nu} + \nabla_{\nu}^{*}}{2} - \frac{a}{2} \nabla_{\nu}^{*} \nabla_{\nu} + c_{sw} a \sum_{\mu=0}^{3} \frac{i}{4} \sigma_{\mu\nu} \hat{F}_{\mu\nu} \right) \mathbb{1}_{f} + m \mathbb{1}_{f} + i \mu_{tm} \gamma_{5} \tau_{3} \right\} \psi(x)$$

$$(Wilson term)$$

$$(wilson term)$$

$$(wilson term)$$

t=T/2r

On the lattice: vary the mass, i.e. vary the scale of $\alpha \rightarrow study$ variation of truncated part. ×

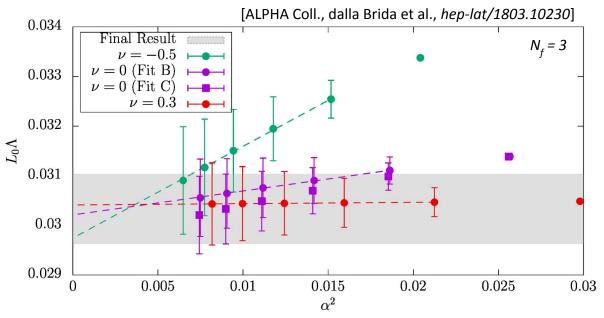
Doublet of mass-degenerate twisted mass Wilson fermions, at full twist

> $\begin{cases} \chi = \exp\left(i\omega\frac{\tau^3}{2}\gamma_5\right)\psi\\ \overline{\chi} = \overline{\psi}\exp\left(i\omega\frac{\tau^3}{2}\gamma_5\right)\end{cases}$ Full twist at: $\omega = \pi/2$

In What Domain is PT Accurate?

- ★ One cannot always simply assume a flat enough behavior!
- Lambda parameter computed by
 ALPHA collaboration in a modified
 Schrödinger Functional scheme:
 even at "small" values for α (e.g.
 α~0.13), truncated terms may be
 large.
- ★ Extrapolation to high energy <u>needed.</u>

$$\mathcal{M}_n(m,\mu) \stackrel{\alpha \to 0}{\sim} \sum_{i=0}^{L} c_n^{(i)}(\mu/\overline{m}_{\overline{\mathrm{MS}}}) \alpha_{\overline{\mathrm{MS}}}^i(\mu) + \mathcal{O}(\alpha^{L+1}(\mu))$$



Perturbation Theory and HQ Moments

Disclaimer: Study the Systematics

Different discretization: (highly improved)

staggered quarks

- N_=2+1 Petreczky, Weber, M=M_ arXiv:hep-lat/1901.06424 1.3 R₄ 1.28 1.26 1.24 1.22 1.2 1.18 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 (a m_{h0})²
- U Very <u>difficult extrapolation</u>, no range with just $\sim a^2$ behavior
- \Box We are not trying to get a competitive α result for the FLAG
- Rather, we want to be able to really study the two big issues

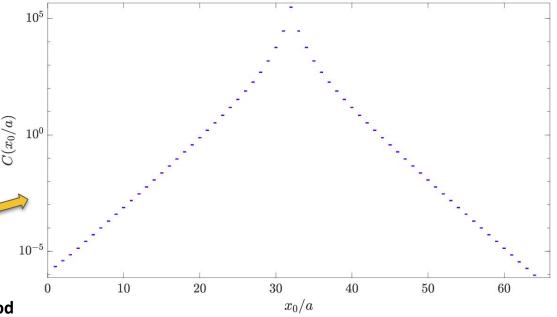
with this method: truncation errors and lattice artefacts

Do this in the **quenched model**, where it is more feasible to reach small lattice spacings and hopefully get reliable continuum extrapolations.

Lattice Setup

- Plaquette gauge action
- P.b.c. in space, open b.c. in time to avoid
 frozen topological charge at small a
- Full twist doublet, with non-perturbative
 c_{sw} to reduce cutoff effects
- Stochastic evaluation of trace and sum over space with U(1) noise sources
- Source placed at 1 fm from boundary, checked absence of boundary effects
- Full twist, set κ to its critical value [1]
- Autocorrelation analysis done with Γ-method
- > Scale set through gradient flow t_0 [2]

Example correlator: no asymmetry around source (no <u>boundary effects</u>) can be seen within precision; $\beta = 6.7859$, $M/M_{2} \approx 1.6$



[1] Lüscher, Sint, Sommer, Weisz, Wolff. [arXiv:hep-lat/9609035][2] Lüscher, arXiv:hep-lat/1006.4518

Perturbation Theory and HQ Moments

Measurements

Run Name	β	$l^3 \times t$	N _{cnfg}	t_0/a^2	a[fm]	$\tau_{\rm int}(t_0)[{\rm cfg}]$	[Ensembles sft from:
q_beta616	6.1628	$32^3 \times 96$	128	5.1604(98)	0.071	0.78	Husung, Krah, Sommer
q_beta628	6.2885	$36^3 \times 108$	137	7.578(22)	0.059	1.37	arXiv:hep-lat/1711.01860]
q_beta649	6.4956	$48^{3} \times 144$	109	13.571(50)	0.044	1.55	
sft4	6.7859	$64^3 \times 192$	200	29.390(98)	0.030	1.00	Physical Volume of
sft5	7.1146	$96^{3} \times 320$	80	67.74(23)	0.020	0.55	L≃2 fm , time
sft6	7.3600	$128^3 \times 320$	98	124.21(91)	0.015	1.03	direction about
sft7	7.700	$192^{3} \times 480$	31	286.3(4.7)	0.010	_	T≃6 fm

Gauge run details, l = L/a, t = T/a.

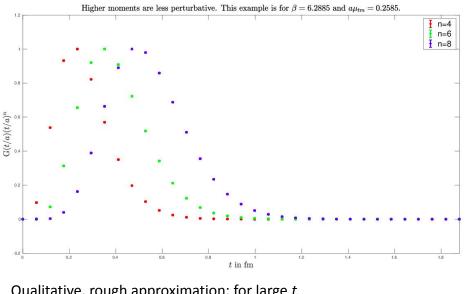
We measure for a range of masses:

 $M_{RGI}/M_{RGI, \text{ charm}} \simeq 3.48, 2.32, 1.55, 1.16, 0.77.$ $M_{RGI} \simeq 5.75, 3.83, 2.56, 1.92, 1.28 \text{ GeV}$

Leonardo Chimirri (DESY - HU)

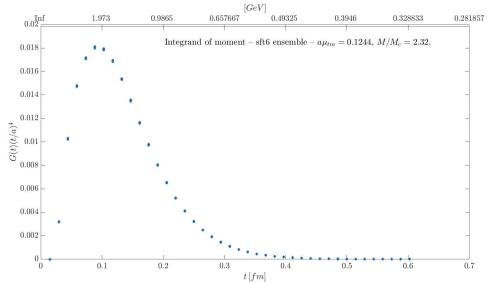
Perturbation Theory and HQ Moments

Quick Glance at Observables



→ Lhs: integrands normalized so their height is 1

- → Increasing n makes moments less perturbative
- → Energy scale of moments is somewhat worrying



Qualitative, rough approximation: for large *t*

$$G(t) \sim \mathrm{e}^{-2m_h t}\,,$$

We see peak position increases with n and decreases with mass:

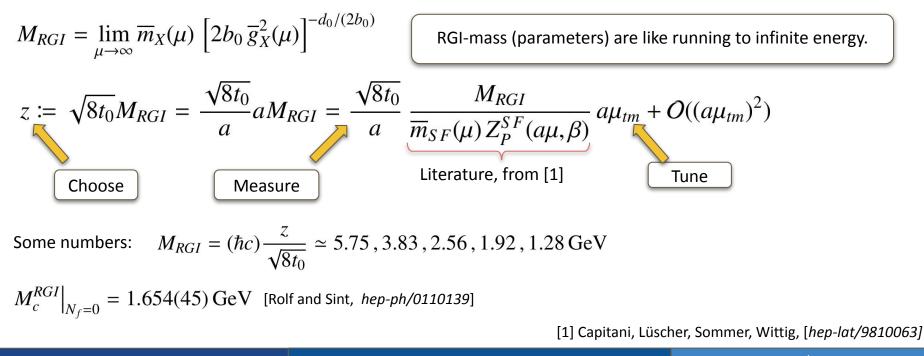
$$\partial \left\{ t^n \mathrm{e}^{-2m_h t} \right\} = 0 \implies t^{n-1} \mathrm{e}^{-2m_h t} \left\{ n - 2m_h t \right\} = 0 \implies t_{peak} \simeq \frac{n}{2m_h}$$

Perturbation Theory and HQ Moments

July 18th, 2<u>022</u>

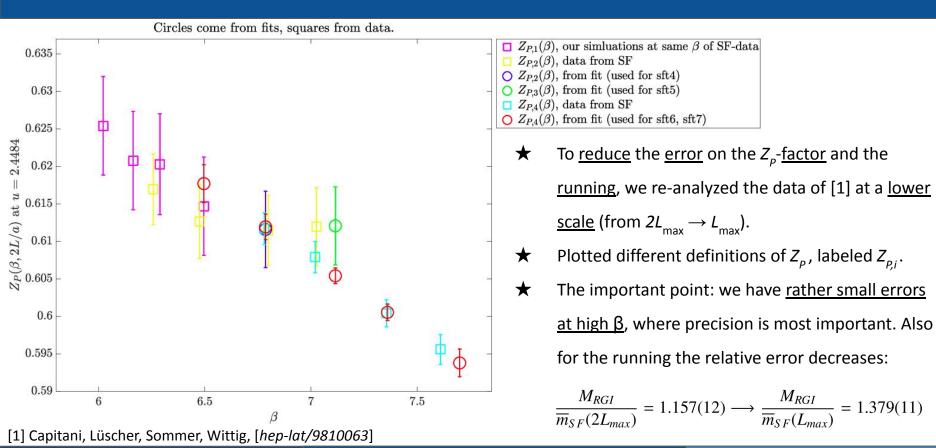
Constant Mass Trajectory

- Line of constant "physics": at every a we tune the bare mass in order to keep some renormalized mass fixed.
- > We keep the <u>renormalization group invariant</u> mass fixed (scheme independent!):



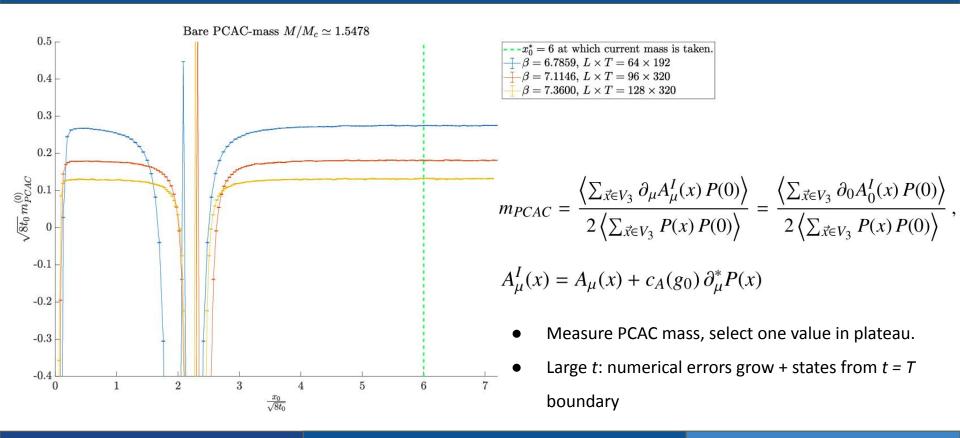
Perturbation Theory and HQ Moments

Reanalysis of Quenched SF Data



Leonardo Chimirri (DES<u>Y - HU)</u>

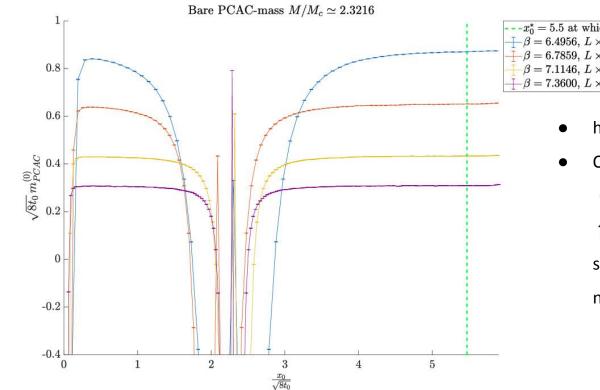
PCAC Data I



Leonardo Chimirri (DESY - HU)

Perturbation Theory and HQ Moments

PCAC Data II



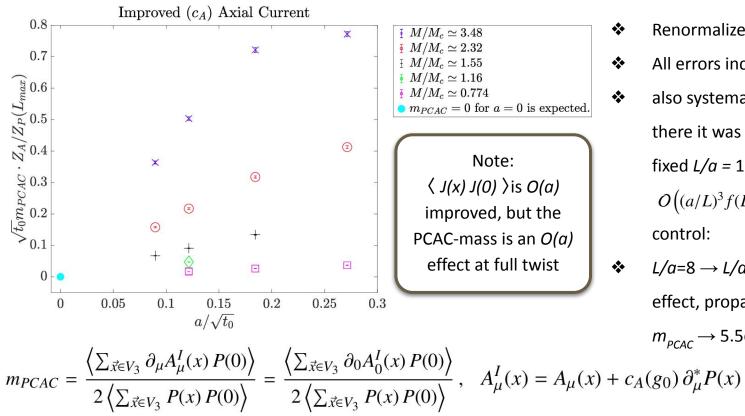
 $\begin{array}{l} --x_{0}^{*}=5.5 \text{ at which current mass is taken.} \\ --\beta=6.4956, \ L\times T=48\times144 \\ --\beta=6.7859, \ L\times T=64\times192 \\ --\beta=7.1146, \ L\times T=96\times320 \\ ---\beta=7.3600, \ L\times T=128\times320 \end{array}$

- higher mass \rightarrow shorter plateau
- Our sums:

saturate well before the point where

numerical errors appear.

Monitoring Full Twist



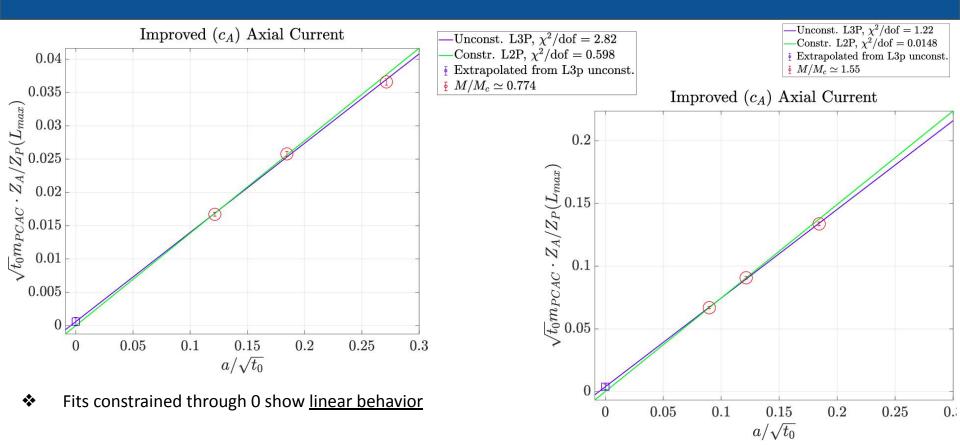
- Renormalized PCAC mass vs a
- All errors included: statistic, Z_A , Z_B
 - also systematic error on K, since there it was determined at fixed L/a = 16. Possible NP effects $O((a/L)^3 f(L/r))$, but they are under control:

L/a=8
$$\rightarrow$$
 L/a=16 gives 2.0e-05

effect, propagate into

 $m_{_{PCAC}} \rightarrow 5.5e-04$ effect

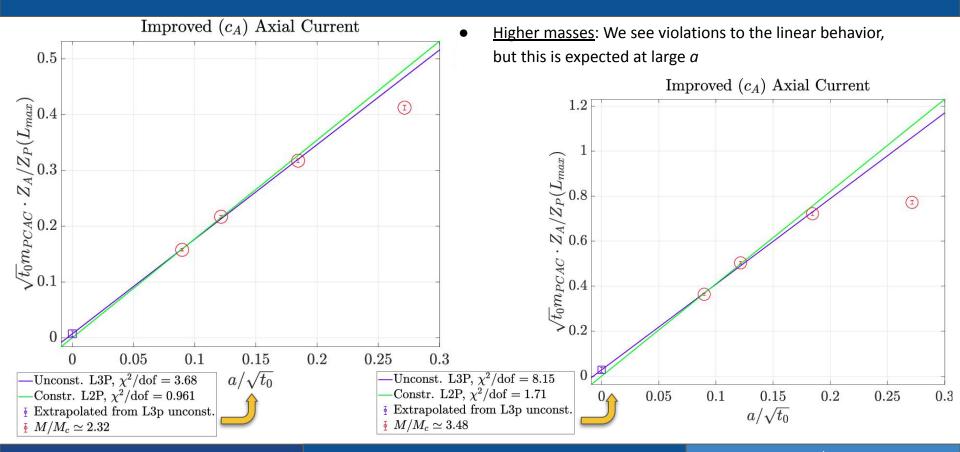
PCAC vs a - I



Leonardo Chimirri (DESY - HU)

Perturbation Theory and HQ Moments

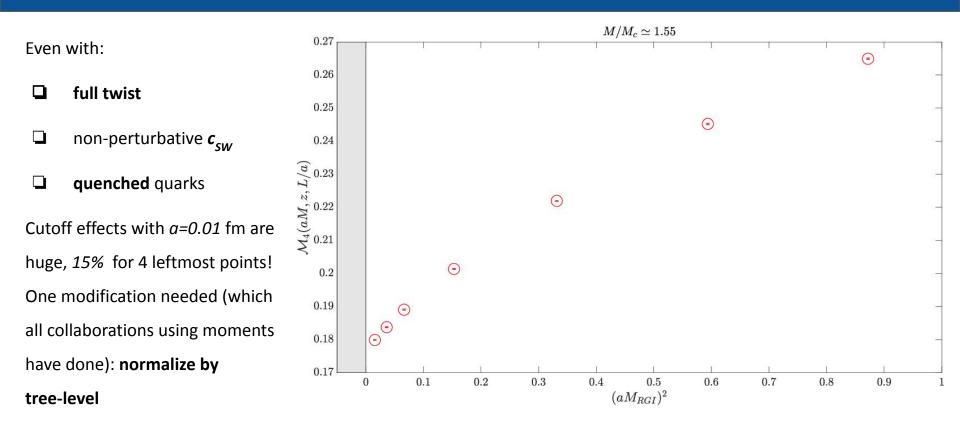
PCAC vs a - II



Leonardo Chimirri (DESY - HU)

Perturbation Theory and HQ Moments

Continuum Limits for *n* **= 4 ?**



Leonardo Chimirri (DESY - HU)

Perturbation Theory and HQ Moments

Tackling Cutoff Effects - I

★ We compute the **finite volume, finite** *a* **tree-level** (TL) **analytically** and divide the moments by it:

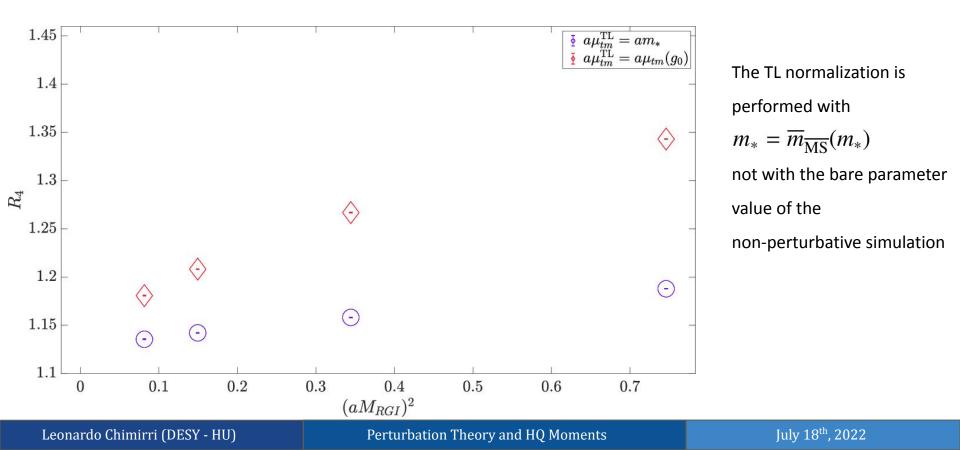
$$R_{n}(\sqrt{8t_{0}}M_{RGI}, aM_{RGI}) = \begin{cases} \frac{\mathcal{M}_{n}(\sqrt{8t_{0}}M_{RGI}, aM_{RGI})}{\mathcal{M}_{n}^{TL}(a\mu_{tm})}, & n = 4\\ \left(\frac{\mathcal{M}_{n}(\sqrt{8t_{0}}M_{RGI}, aM_{RGI})}{\mathcal{M}_{n}^{TL}(a\mu_{tm})}\right)^{\frac{1}{n-4}}, & n > 4 \end{cases}$$

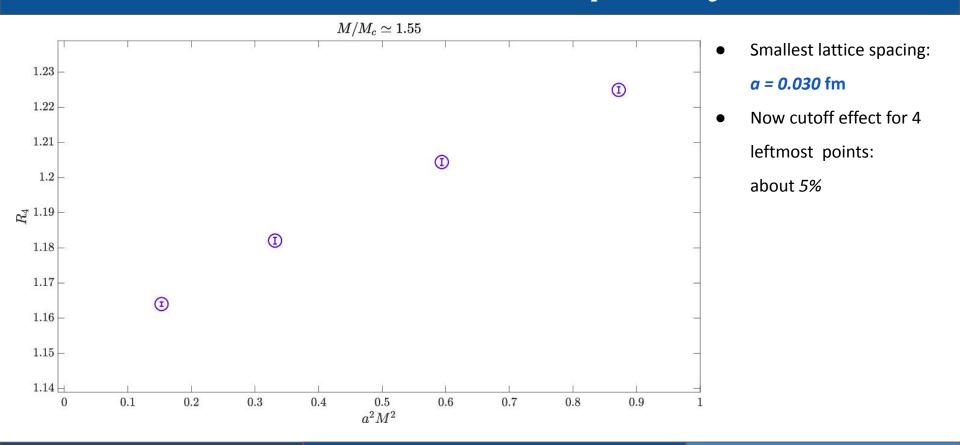
$$Leading cutoff effects suppressed by a power of the coupling of$$

- **★** Caveat: for n=4, potentially log(a) corrections arise at TL (more later).
- **★** For n > 4 take ratios of moments to get rid of strong mass dependence and mitigate some error sources:

$$\lim_{a \to 0} \frac{R_n(\sqrt{8t_0}M_{RGI}, aM_{RGI})}{R_{n+2}(\sqrt{8t_0}M_{RGI}, aM_{RGI})} = \sum_{i \ge 0}^L c_n^{(i)}(\mu/\overline{m}_{\overline{\mathrm{MS}}}(\mu)) \alpha_{\overline{\mathrm{MS}}}^i(\mu) + O(\alpha^{L+1})$$

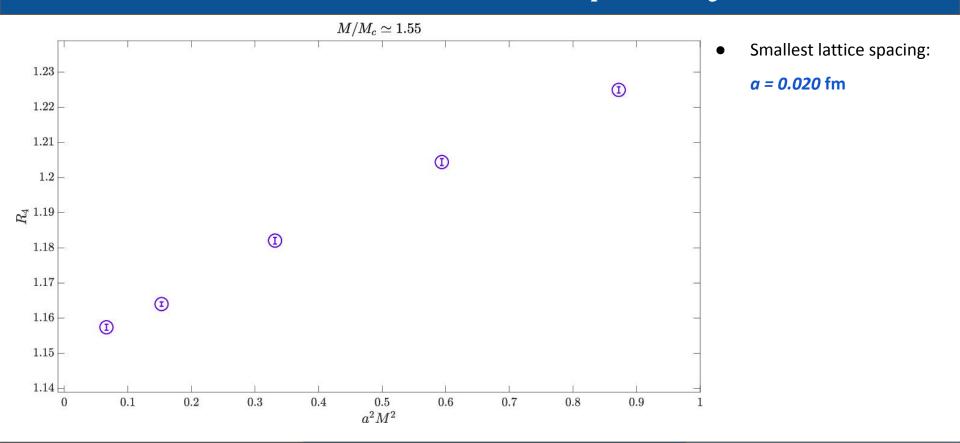
Tackling Cutoff Effects - II





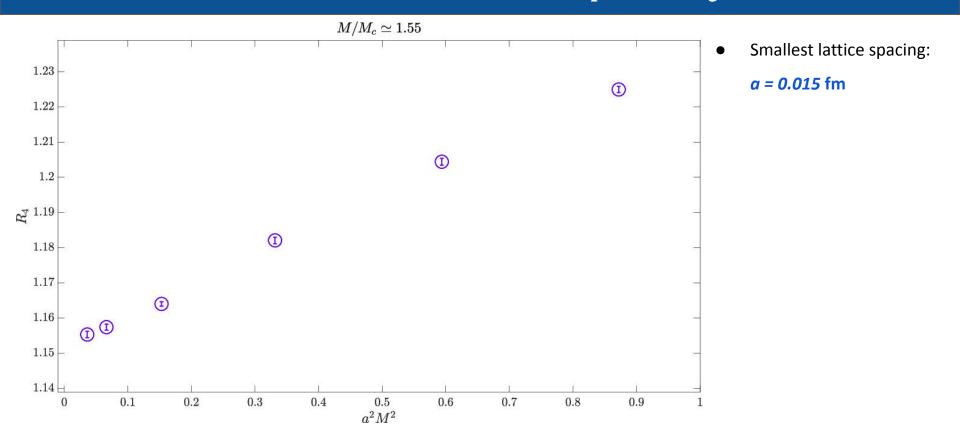
Leonardo Chimirri (DESY - HU)

Perturbation Theory and HQ Moments



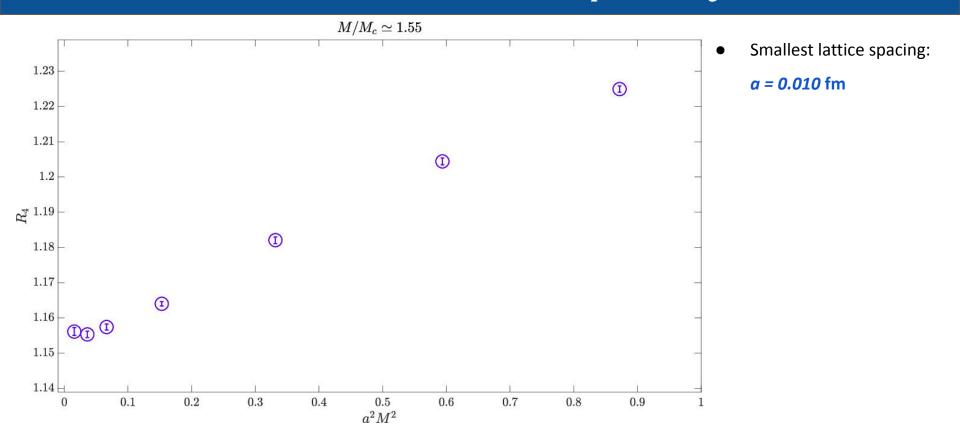
Leonardo Chimirri (DESY - HU)

Perturbation Theory and HQ Moments



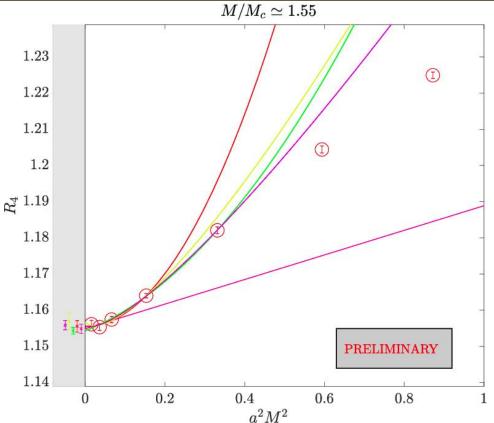
Leonardo Chimirri (DESY - HU)

Perturbation Theory and HQ Moments



Leonardo Chimirri (DESY - HU)

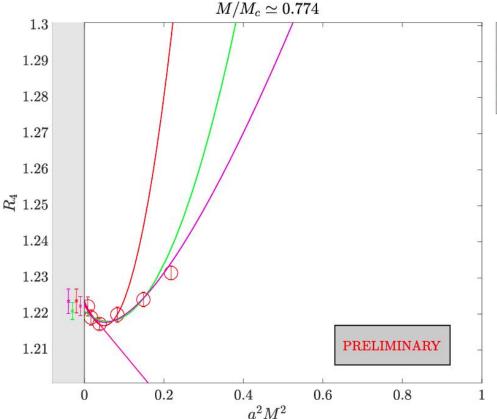
Perturbation Theory and HQ Moments



$$\begin{array}{|c|c|c|c|c|} \hline $\underline{1}$ Lattice Moments} \\ \hline $-c_0 + c_1 a^2, \, {\rm cut} \, a^2 M^2 < 0.10$ \\ \hline $-c_0 + c_1 a^2 + c_2 a^4, \, {\rm cut} \, a^2 M^2 < 0.20$ \\ \hline $-c_0 + c_1 a^2 + c_2 a^4, \, {\rm cut} \, a^2 M^2 < 0.35$ \\ \hline $-c_0 + c_1 a^2 + c_2 a^2 \, \log(a), \, {\rm cut} \, a^2 M^2 < 0.20$ \\ \hline $-c_0 + c_1 a^2 + c_2 a^2 \, \log(a), \, {\rm cut} \, a^2 M^2 < 0.35$ \\ \hline $-c_0 + c_1 a^2 + c_2 a^2 \, \log(a), \, {\rm cut} \, a^2 M^2 < 0.35$ \\ \hline $-c_0 + c_1 a^2 + c_2 a^2 \, \log(a), \, {\rm cut} \, a^2 M^2 < 0.35$ \\ \hline $-c_0 + c_1 a^2 + c_2 a^2 \, \log(a), \, {\rm cut} \, a^2 M^2 < 0.35$ \\ \hline $-c_0 + c_1 a^2 + c_2 a^2 \, \log(a), \, {\rm cut} \, a^2 M^2 < 0.35$ \\ \hline $-c_0 + c_1 a^2 + c_2 a^2 \, \log(a), \, {\rm cut} \, a^2 M^2 < 0.35$ \\ \hline $-c_0 + c_1 a^2 + c_2 a^2 \, \log(a), \, {\rm cut} \, a^2 M^2 < 0.35$ \\ \hline $-c_0 + c_1 a^2 + c_2 a^2 \, \log(a), \, {\rm cut} \, a^2 M^2 < 0.35$ \\ \hline $-c_0 + c_1 a^2 + c_2 a^2 \, \log(a), \, {\rm cut} \, a^2 M^2 < 0.35$ \\ \hline $-c_0 + c_1 a^2 + c_2 a^2 \, \log(a), \, {\rm cut} \, a^2 M^2 < 0.35$ \\ \hline $-c_0 + c_1 a^2 + c_2 a^2 \, \log(a), \, {\rm cut} \, a^2 M^2 < 0.35$ \\ \hline $-c_0 + c_1 a^2 + c_2 a^2 \, \log(a), \, {\rm cut} \, a^2 M^2 < 0.35$ \\ \hline $-c_0 + c_1 a^2 + c_2 a^2 \, \log(a), \, {\rm cut} \, a^2 M^2 < 0.35$ \\ \hline $-c_0 + c_1 a^2 + c_2 a^2 \, \log(a), \, {\rm cut} \, a^2 M^2 < 0.35$ \\ \hline $-c_0 + c_1 a^2 + c_2 a^2 \, \log(a), \, {\rm cut} \, a^2 M^2 < 0.35$ \\ \hline $-c_0 + c_1 a^2 + c_2 a^2 \, \log(a), \, {\rm cut} \, a^2 M^2 < 0.35$ \\ \hline $-c_0 + c_1 a^2 + c_2 a^2 \, \log(a), \, {\rm cut} \, a^2 M^2 < 0.35$ \\ \hline $-c_0 + c_1 a^2 + c_2 a^2 \, \log(a), \, {\rm cut} \, a^2 M^2 < 0.35$ \\ \hline $-c_0 + c_1 a^2 + c_2 a^2 \, \log(a), \, {\rm cut} \, a^2 M^2 < 0.35$ \\ \hline $-c_0 + c_1 a^2 + c_2 a^2 \, \log(a), \, {\rm cut} \, a^2 M^2 < 0.35$ \\ \hline $-c_0 + c_1 a^2 + c_2 a^2 \, \log(a), \, {\rm cut} \, a^2 M^2 < 0.35$ \\ \hline $-c_0 + c_0 +$$

- Several fit Ansätze, decent agreement between them.
- Cut χ^2 /d.o.f. < 2.
- Errors from parameter tuning $(Z_p, t_0/a^2, \kappa)$ computed using continuum PT for corresponding derivatives.

Leonardo Chimirri (DESY - HU)



 $\begin{array}{|c|c|c|c|c|} \hline $\underline{\bullet}$ Lattice Moments} \\ \hline $-c_0+c_1a^2$, cut $a^2M^2<0.05$ \\ \hline $-c_0+c_1a^2+c_2a^4$, cut $a^2M^2<0.10$ \\ \hline $-c_0+c_1a^2+c_2a^4$, cut $a^2M^2<0.15$ \\ \hline $-c_0+c_1a^2+c_2a^2\log(a)$, cut $a^2M^2<0.15$ \\ \hline \end{tabular} \end{array}$

- Several fit Ansätze, decent agreement between them.
- Cut χ^2 /d.o.f. < 2.
- At smaller mass the **uptick** is much more visible, since we are able to reach a smaller *aM* w.r.t. the larger masses.
- Coupling very sensitive to continuum extrapolated value!

Leonardo Chimirri (DESY - HU)

Intermezzo: Why log Fits?

- We find the presence of $(aM)^2 log(aM)$ terms at tree-level (see also [Cè et al. (2021)] for g-2).
- Preliminary analysis: these **logs seem to be present** in the true $a \rightarrow 0$ asymptotics, although weaker.
- This is a <u>work in progress</u> and will be discussed at the Lattice Conference 2022.
- Presenently, *R*_{*a*} cannot be extrapolated to the continuum with reasonable precision.
- Note: this is the reason <u>JLQCD</u> [Nakayama et al. 2016] **did not use** R_a , but only higher moments.
- Naive Symanzik expansion, a^2 terms go like:
- Or, more formally, but still naively:
 - > I(0, t) → integral for n=4 from 0 to t (i.e. the moment if $t \rightarrow \infty$)
 - > T = t/a
 - > ΔI the **difference** between the continuum **integral** and the lattice **sum**, we find:

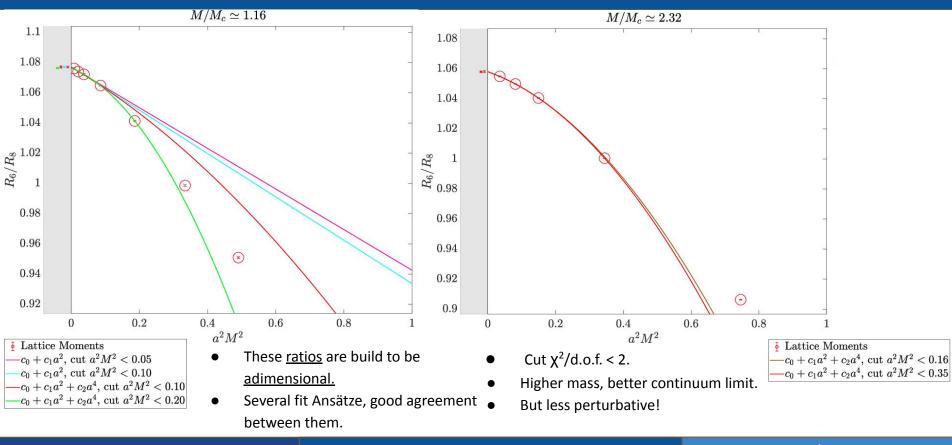
$$a^2 \int \mathrm{d}t \, t^{n-5}$$

Not integrable for *n* = 4 Integrable for *n* = 6, 8, ...

$$\frac{\Delta I(0,t)}{I_{\text{cont}}(0,t)} \sim \tau^{-2} \sum_{i} k_i \int_{\tau_0}^{\tau} 1/s \, \mathrm{d}s + u_i(\tau_0) \\ = \tau^{-2} \sum_{i} k_i \, \left[\log(\tau) + u_i(1) \right]$$

Perturbation Theory and HQ Moments

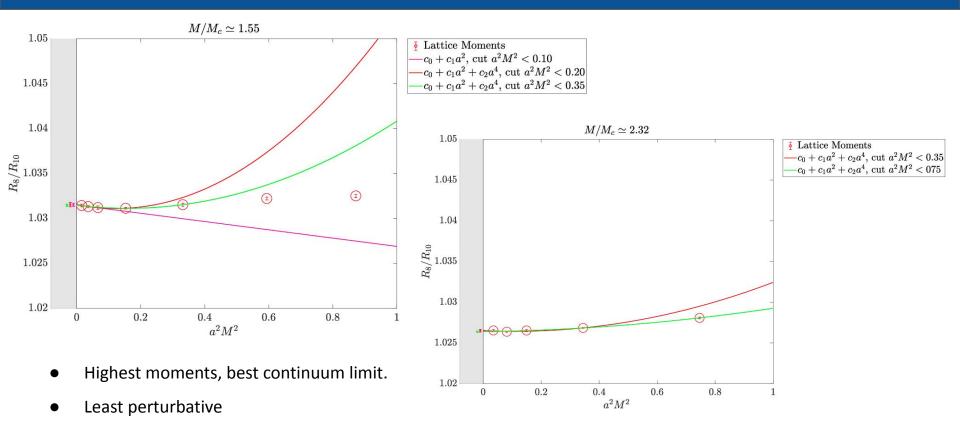
Continuum Extrapolations: R_6/R_8



Leonardo Chimirri (DESY - HU)

Perturbation Theory and HQ Moments

Continuum Extrapolations: R_8/R_{10}



Leonardo Chimirri (DESY - HU)

Perturbation Theory and HQ Moments

Extracting α

• Perturbative expansion of moments with known coefficients:

$$\lim_{a\to 0} R_4(\sqrt{8t_0}M_{RGI}, aM_{RGI}) \stackrel{\alpha\to 0}{\sim} \sum_{i=0}^L r_4^{(i)}\left(\mu/\overline{m}_{\overline{\mathrm{MS}}}(\mu)\right) \alpha_{\overline{\mathrm{MS}}}^i(\mu) + O\left(\alpha^{L+1}(\mu)\right)$$

• For each RGI-mass, fix scale parameter *s* from $\mu_s = s\overline{m}_{\overline{MS}}(\mu_s)$ and invert to obtain α at this scale. Then repeat for different *s*.

$$\lim_{a\to 0} R_4(\sqrt{8t_0}M_{RGI}, aM_{RGI}) \stackrel{\alpha\to 0}{\sim} \sum_{i=0}^3 r_4^{(i)}(s) \alpha_{\overline{\mathrm{MS}}}^i(\mu_s) + O(\alpha^4(\mu_s))$$

2

• Now we have two handles to turn to see how the truncated term varies.

$$r_n^{(i)}\left(\mu/\overline{m}_{\overline{\mathrm{MS}}}(\mu)\right) = r_n^{(i,0)} + \sum_{k=1}^{i-1} r_n^{(i,k)} \log^k\left(\mu/\overline{m}_{\overline{\mathrm{MS}}}(\mu)\right) \longrightarrow r_n^{(i)}(s) = r_n^{(i,0)} + \sum_{k=1}^{i-1} r_n^{(i,k)} \log^k(s)$$

$$\mathcal{R}(\alpha) \stackrel{\alpha \to 0}{\sim} \sum_{n=0}^{\infty} c_n(s) \, \alpha(\mu)^n \iff \lim_{\alpha \to 0} \left| \mathcal{R}(\alpha) - \sum_{n=0}^N c_n(s) \, \alpha(\mu)^n \right| = O(\alpha^{N+1}), \quad \forall N < \infty$$

Asymptotic series! $s \ll 1$ or $s \gg 1$ means coefficents may spoil quality of series

Leonardo Chimirri (DESY - HU)

Perturbation Theory and HQ Moments

Scale Variations and Truncation Error

- An <u>observable does not depend on μ</u>, but in its asymptotic perturbative expansion there will, in general, be a spurious due to the truncation.
- Variation of *s* as an estimate of the truncation?

$$r_n^{(i)}(s) = r_n^{(i,0)} + \sum_{k=1}^{i-1} r_n^{(i,k)} \log^k(s)$$

• ... but no knowldege about $r_n^{(i,0)}$

asymptotic e a $\mathcal{M}_{n}(m,\mu) \stackrel{\alpha \to 0}{\sim} \sum_{i=0}^{L} c_{n}^{(i)}(\mu/\overline{m}_{\overline{\mathrm{MS}}}) \alpha_{\overline{\mathrm{MS}}}^{i}(\mu) + O(\alpha^{L+1}(\mu))$ Spurious μ dependence Hard to estimate, systematic, scale dependent truncation error

- Estimate of truncation error is tricky. Using $r_n^{(4,0)} \simeq c r_n^{(3,0)}$, $c = 2 \div 5$, gives smaller error estimate w.r.t. to variation of $s \in [0.5, 2]$ done at fixed mass. Is this reliable?
- FAC (Fastest Apparent Convergence) scale: fix *s* so that first scale dependent coefficient is zero, i.e.:

$$R_4(\sqrt{8t_0}M_{RGI}, 0) \stackrel{\alpha \to 0}{\sim} 1 + r_4^{(1)} \alpha_{\overline{\text{MS}}}(\mu_{s_{opt}}) + r_4^{(3)}(s_{opt}) \alpha_{\overline{\text{MS}}}^3(\mu_{s_{opt}}) + O(\alpha^4) \iff r_4^{(2)}(s_{opt}) = 0$$

The Λ Parameter

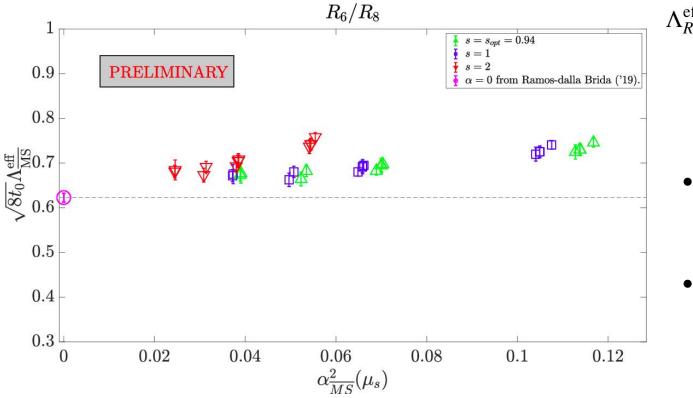
• Run to infinite energy via 5L β -function and 4L τ (mass anomalous dimension):

$$\frac{\sqrt{8t_0}\Lambda_{RGI}^{\overline{\text{MS}}}}{\sqrt{8t_0}M_{RGI}} = s \frac{(b_0 \overline{g}_{\overline{\text{MS}}}(\mu_s)^2)^{-b_1/(2b_0^2)}}{(2b_0 \overline{g}_{\overline{\text{MS}}}(\mu_s)^2)^{-d_0/(2b_0)}} \exp\left\{-\frac{1}{2b_0 \overline{g}(\mu_s)^2} - \int_0^{\overline{g}_{\overline{\text{MS}}}(\mu_s)} dx \left[\frac{1-\tau(x)_{\overline{\text{MS}}}}{\beta_{\overline{\text{MS}}}(x)} + \frac{1}{b_0 x^3} - \frac{b_1}{b_0^2 x} + \frac{d_0}{b_0 x}\right]\right\}$$

• Given the coupling at μ_s and our choice of mass *z*, we can compute Λ . Given the above and $O(\alpha^3)$ knowledge of moments one has:

$$\Lambda_{RGI}^{\text{eff}} = \Lambda_{RGI} + O\left(\alpha_{\overline{\text{MS}}}^2(\mu_s)\right)$$

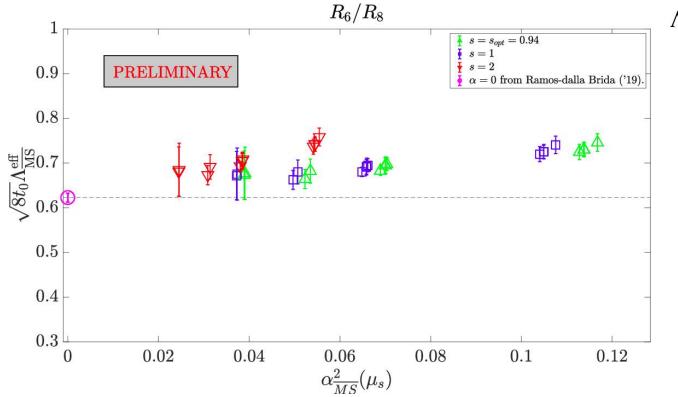
Λ Plot from R_6/R_8



$$\mu_{s}^{\text{eff}} = \Lambda_{RGI} + O\left(\alpha_{\overline{\text{MS}}}^{2}(\mu_{s})\right)$$
$$\mu_{s} = s\overline{m}_{\overline{\text{MS}}}(\mu_{s})$$

- Largest mass dropped
 here, really not possible to
 take a continuum limit.
- Still, better than R₄, also
 no log(a) term here.

\wedge Plot from R_6/R_8 : Extra Error

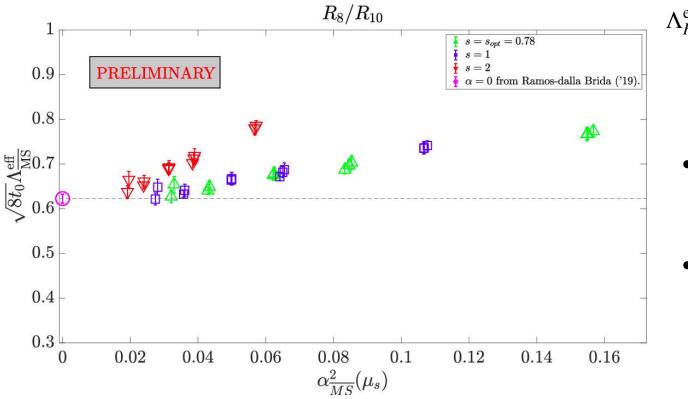


$$\Lambda_{RGI}^{\text{eff}} = \Lambda_{RGI} + O\left(\alpha_{\overline{\text{MS}}}^2(\mu_s)\right)$$
$$\mu_s = s\overline{m}_{\overline{\text{MS}}}(\mu_s)$$

- Still, better than R_4 , also **no** *log(a)* term here.
- Extra systematic error: ¹/₂ the distance between leftmost and extrapolated point.

Leonardo Chimirri (DES<u>Y - HU)</u>

Λ Plot from R_8/R_{10}



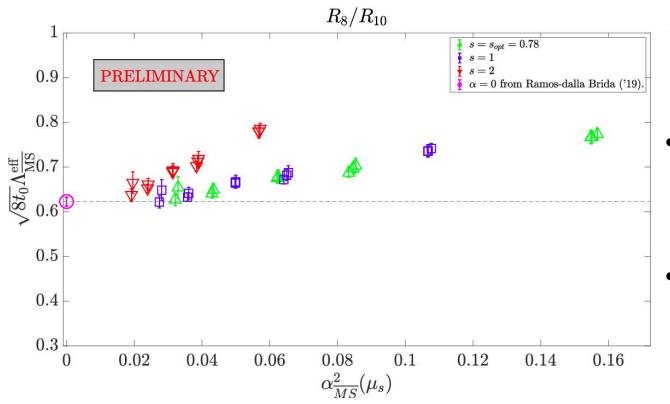
$$\Lambda_{RGI}^{\text{eff}} = \Lambda_{RGI} + O\left(\alpha_{\overline{\text{MS}}}^2(\mu_s)\right)$$
$$\mu_s = s\overline{m}_{\overline{\text{MS}}}(\mu_s)$$

- Continuum limit more
 reliable. Also no log(a)
 here.
- Is least perturbative (maybe even FV effects, but this affects rightmost points, at lightest mass).

Leonardo Chimirri (DESY - HU)

Perturbation Theory and HQ Moments

\wedge Plot from R_8/R_{10} : Extra Error



$$\Lambda_{RGI}^{\text{eff}} = \Lambda_{RGI} + O\left(\alpha_{\overline{\text{MS}}}^2(\mu_s)\right)$$
$$\mu_s = s\overline{m}_{\overline{\text{MS}}}(\mu_s)$$

- Extra systematic error: ½ the distance between leftmost and extrapolated point.
- Our results are compatible
 with a linear extrapolation
 constrained to go through the
 Ramos-dalla Brida result.

Leonardo Chimirri (DESY - HU)

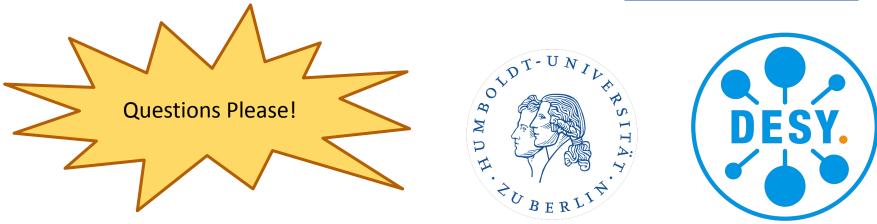
Perturbation Theory and HQ Moments

Summary and Outlook

- > Even with non-perturbative c_{sW} and fully twisted, quenched Wilson fermions taking the **continuum limit** is very **challenging**.
- > We are looking into **understanding log-enhanced cutoff effects of** R_4 due to the short distance region of the correlation function.
- > Performing **global fits** of all *M*, *a* together might help.
- > Extracting the Λ -parameter from R_4 with controlled errors is very demanding. It might be beyond our capabilities in the pure gauge theory.
- \succ Extracting the Λ -parameter from ratios of R_n , with *n=6,8,10*, looks much better.
- > But the higher moments are **less perturbative**.
- > All in all, window problem looks tough for moments method.

Thank You!

This project has received funding from the <u>European</u> <u>Union's Horizon 2020</u> research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 813942.



BUP 0.1: Checks - I

We cross checked several things:

0.116 0.114

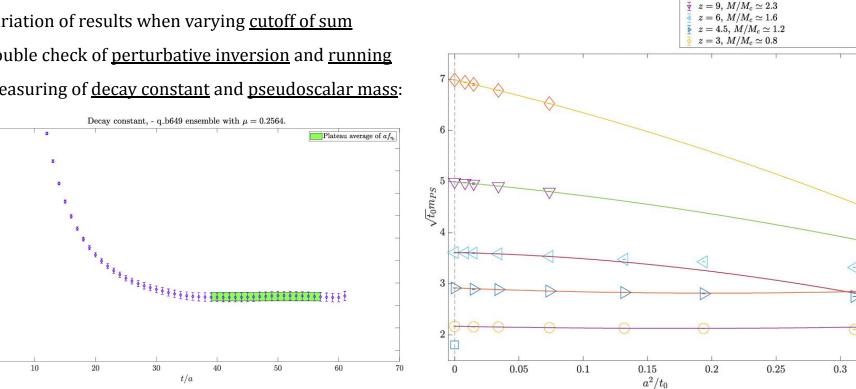
0.112 0.11

 $\overset{u}{f} \overset{0.108}{v}_{v}$

0.106 0.1040.102 0.1 0.098

0

- variation of results when varying cutoff of sum A.
- B. double check of perturbative inversion and running
- C. measuring of <u>decay constant</u> and <u>pseudoscalar mass</u>:



Leonardo Chimirri (DESY - HU)

Perturbation Theory and HQ Moments

July 18th, 2022

Cali et al. 21, at M_c , tune to this value.

 $z = 13.5, M/M_c \simeq 3.5$

BUP 0.2: Checks - II

No hints of issues, no mistunings, all consistent.

D. <u>Finite Volume Effects</u>? We computed analytically the continuum TL (where FV effects are expected to be larger):

$$\frac{\Delta G_n^L}{G_n(\infty)} \stackrel{mL \to \infty}{\sim} \frac{\pi}{2} \Gamma(3/2) \Gamma\left(\frac{n-2}{2}\right) \left(\frac{2}{mL}\right)^{\frac{3-n}{2}} e^{-mL} \left(1 + O\left(\frac{1}{mL}\right)\right).$$

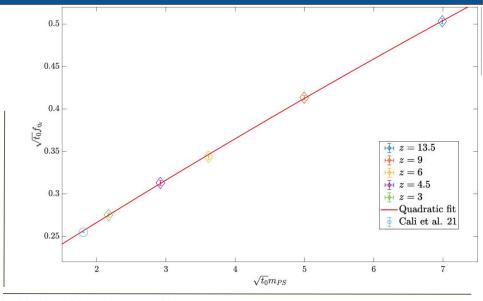


Table 4: Relative TL-FV effects, normalized by $L = \infty$ value, as function of $y = Lm_*$. For $M/M_c > 1.1$, we have y > 14.

у	5	6	7	8	9	10	11	12	13	14	15
n = 4	0.015	0.0060	0.0024	0.00093	0.00036	1.4e-04	5.5e-05	2.1e-05	8.0e-06	3.1e-06	1.2e-06
n = 6	0.037	0.018	0.0083	0.0037	0.0016	7.1e-04	3.0e-04	1.3e-04	5.2e-05	2.1e-05	8.7e-06
n = 8	0.19	0.11	0.058	0.030	0.015	0.0071	0.0033	1.5e-03	6.8e-04	3.0e-04	1.3e-04
n = 10	1.39	0.97	0.61	0.36	0.20	0.11	0.054	0.027	0.013	0.0063	3.0e-03

Leonardo Chimirri (DESY - HU)

Perturbation Theory and HQ Moments