

WHAT CAN GO WRONG ... Some Examples

Prof. Dr. Ingrid-Maria Gregor DESY/Universität Bonn SoSe 22

DISCLAIMER

- Designing a large (silicon) detector for particle tracking or identification is a very complex business
- Many very nice examples exist
- Also some examples of failures
- Idea of this talk: some stuff you don't find in textbooks
- Collection of failures might give the impression of overall incompetence
 - Overwhelming majority of detectors run like a chime
 - Unbelievable effort to get large accelerators and experiments in a global effort to run so nicely
 - Even sociologists are interested in how we do this …

Some bias in the selection of detectors and examples based on my experience, my friends and other factors ...

PROBLEMS IN OVERALL CONCEPT

VIFICET, S, C

3

DO WITHOUT INNER TRACKING MAGNET

- D0 Experiment at Tevatron constructed to study proton-antiproton collisions
- Top quark discovery in 1995 together with CDF experiment
- Original design for Run I: no magnet for tracking
 - "Focussing on parton jets for deciphering the underlying physics than emphasis on individual final particle after hadronisation"
 - Very compact tracking system
 - Uranium-liquid argon calorimeter for identification of electrons, photons, jets and muons
- Effect of low momentum charged particles greatly underestimated resulting in analysis difficulties.

Run II system included a silicon microstrip tracker and a scintillating-fibre tracker located within a 2 T solenoidal magnet.

ZEUS TRD

- Zeus Transition Radiation detector for electron identification.
- Aim: h/e rejection ratio of about 10⁻² for electron tracks embedded in jets (1 - 30 GeV/c).
 - However central tracking detector (wire chamber) had 2cm end-plate for wire fixation
 - Electrons 100% probability to shower and thus were not present in showers anymore
 - Reason for mishap: no proper Monte Carlo simulation tools available at time of detector design
 - TRD used for Here Run I Replaced by Straw Tube Tracker for Run II

UNI

Lesson learned: Monte Carlos simulations should include everything

UNEXPECTED IRRADIATION FAILURE

VHOET, S, C

6

RADIATION DAMAGE IN SILICON

- Radiation damages the silicon on atomic level significantly leading to macroscopic effects.
- Surface effects: Generation of charge traps due to ionising energy loss — Total ionising dose, TID (problem for sensors and readout electronics).
 - Cumulative long term trapping of positive charge
 - Increase of leakage current and oxide breakdown


```
STI = shallow trench interface
```

- Bulk effects: displacement damage and build up of crystal defects due to non ionising energy loss (NIEL) (main problem for sensors).
 - Unit: 1MeV equivalent n/cm²

Defects composed of: Vacancies and Interstitials

Compound defects with impuritie possible!

- Transient effects: Radiation induced errors in microelectronic circuits
 - caused by passing charged particles leaving behind a wake of electron-hole pairs
 - single event upsets, single event latch-ups, ….

Generations of scientists worked on understanding failures connected to radiation damage and how to mitigated the effects - however ...

Ingrid-Maria Gregor - What can go wrong

CMS DC-DC CONVERTER

- During 2017 new pixel detector installed in CMS with DC-DC converter for powering
 - After few months: ~5% of deployed converters failed.
 - During winter shutdown: another ~35% of converters were found partially damaged
- Extremely difficult to identify problem over months multiple tests conducted
- Found strong correlation between radiation background and failures, as well as the functional sequence necessary for the damage to happen.
 - Damage caused by TID radiation damage opening a source-drain leakage current in **one** transistor in Feast2.1 chip
 - High-voltage transistors can not be designed in an enclosed layout to prevent this problem

PC-PC in a nutshell:

transfer energy into detector with higher voltage/lower current and transform just before the load to operation voltage

Feast2

Consequences for operation
lower input voltage helps
stop disabling the output

https://project-dcdc.web.cern.ch/project-dcdc/public/Documents/ExecutiveSummary2018.pdf https://instrumentationseminar.desy.de/sites2009/site_instrumentationseminar/content/e70397/e282395/e287407/20190614_pixelphase1JIS.pdf

Ingrid-Maria Gregor - What can go wrong

TID BUMP

Surface effects: Generation of charge traps due to ionizing energy loss (Total ionising dose, TID) **(main problem for electronics).**

- The leakage current is the sum of different mechanisms involving:
 - the creation/trapping of charge (by radiation)
 - its passivation/de-trapping (by thermal excitation)
- These phenomena are dose rate and temperature dependent!
- Charge trapped in the STI oxide
 - +Q charge
 - Fast creation
 - Annealing already at T_{amb}
- Interface states at STI-Silicon interface
 - -Q for NMOS, +Q for PMOS
 - Slow creation

BONN

Annealing starts at 80-100C

ATLAS IBL TID BUMP

- Steep increase in power consumption of IBL during operation increasing the temperature
- Effect of total ionising dose on front-end chip FE-I4B
- Caused by the effect of TID on NMOS transistors:
 - Leakage current was induced by positive charge trapped in the bulk of the shallow trench isolation (STI)
 - Temperature and voltage depending

during running

Mitigation plan:

- Operating temperature was increased from −10 ∘C to and 10 ∘C then decreased to 5 ∘C.
- Digital supply-voltage was decreased to from 1.2 V 1.0 V until TID approached more than 4 MRad.

"LOW TECH" FAILURES

WHIDET, S, C

600

WHAT IS "LOW" TECH ?

- In particle physics experiments almost everything is high tech
 - Need extreme reliability
 - Radiation tolerance
 - Precision
 - Mostly running longer than originally planned
 - However some areas considered as "low tech" and people (and funding agencies) don't like to invest research money into those areas
 - Cables for powering
 - Power plants
 - Cooling
 - Data transfer (optical and electrical)
 - Non sensitive materials (mechanics)
 - Glues

what are other words for low-tech? simple, unsophisticated, basic, dolly, foolproof, onefold, elementary, simpler, crude, rudimentary

For particle physics experiments

WIRE-BONDS AND WIRE BREAKAGE

V HOET, S, C

PROBLEMS WITH WIRE BONDS (CDF, DO)

- Very important connection technology for tracking detectors: wire bonds:
 - 17-20 um small wire connection -> terrible sensitive
- Observation: During synchronous readout conditions, loss of modules (no data, Drop in current)

- Tests revealed:
 - Bonds start moving due to Lorentz Force in magnetic field
 - Wire resonance in the 20 kHz range
 - Current is highest during data readout
 - Already a few kicks are enough to get the bond excited

Implemented "Ghostbuster" system which avoids long phases with same readout frequency

during running

OPAL MVD 1994

- OPAL MVD ran for a short while without cooling water flow.
- Temperature of the detector rose to over 100°C.
 - Most of the modules to fail or to be partially damaged.
 - Chain of problem causing damage:

- MVD expert modified the control/monitoring software between consecutive data taking runs.
- Inserted bug which stopped software in a state with cooling water off but with the low voltage power on.
- Stopped software also prevented the monitoring of the temperature from functioning
- Should have been prevented by additional interlock but that was also disabled....

Lucky outcome:

- Damage was mostly melted wire bonds
- Detector could be fixed in winter shutdown

Mitigation plan:

- new and more rigorous interlock system that could not be in a disabled state during data taking conditions.
- rule was implemented that prohibited software modifications between consecutive data taking runs.

ATLAS IBL - WIRE BOND CORROSION

- Additional pixel layer for ATLAS installed in 2015
- Five months before installation: corrosion residues observed at wire-bonds after cold tests (-25 C)
 - Severe damage of many wire-bonds
- Residue showed traces of chlorine: catalyst of a reaction between Aluminium (wire-bonds) and H₂O (in air)
- Origin of chlorine in system never fully understood

Emergency repair and additional staves from spare parts

during	production

https://indico.cern.ch/event/435798/contributions/1074098/attachments/1134177/1622192/encapsulation_study - Oxford.pdf

BONN Ingrid-Maria Gregor - What can go wrong

MORE WIRE BOND WRECKAGE

- During CMS strip tracker production quality assurance applied before and after transport
 - Quality of wires is tested by pull tests (measured in g)
- Wire bonds were weaker after transport with plane
- Random 3.4 g NASA vibration test could reproduce same problem
- Problem observed during production -> improved by adding a glue layer
- No further problems during production

during production

COOLING DAMAGES

VI FIDET, S, C

CCP.

WATER DAMAGE IN TRACKER ...

H1@HERA FST in 2004

- Imperfect crimp + hardening of plastic (age, irradiation) => water leak
- Water condensation => damage
- Tracker segment had to be rebuilt

during running

ATLAS PIXEL TUBE CORROSION

during production

- Cooling tube of current pixel layers were supposed to be very light in material
 - Bare pipe material (AI)
 - Ni plating used to allow for brazing of the pipe fittings
 - No proper drying procedure \rightarrow water
- Water triggered corrosion process in the aluminium pipes.
 - Corrosion was due to galvanic process where water and traces of halogen (like CI) acted as electrolyte.
 - Effect of the galvanic corrosion led in some cases to holes in the pipe.

Six months delay in schedule

- Repair the 43 loaded staves with a pipe-inside-the-pipe
- Production of new staves with new Al compound and laser welding
- Repair of bare staves (~100)

OTHER PROBLEMS AND FAMOUS PROBLEMS

ATLAS IBL STAVE BOW

during commissioning

- Distortion depending on the operating temperature was observed.
- Caused by a mismatch between the coefficients of thermal expansion (CTE) of a bare stave made with the carbon foam and the flex attached on the bare stave.
- Maximum more than 300 µm at -20 °C with respect to the nominal position at the room temperature.

Mitigated by temperature control at the level of 0.2 K and the regular alignment correction in the offline reconstruction

CABLE PROBLEM WITH PRESS COVERAGE

- Oscillation Project with Emulsion-tRacking Apparatus OPERA: instrument for detecting tau neutrinos from muon neutrino oscillations
- In 2011 they observed neutrinos appearing to travel faster than light.
 - Very controversial paper also within collaboration

The top 10 biggest science stories of the decade

- Kink from a GPS receiver to OPERA master clock was loose
 - Increased the delay through the fibre resulting in decreasing the reported flight time of the neutrinos by 73 ns,
 - making them seem faster than light.

After finding the problem, the difference between the measured and expected arrival time of neutrinos was approximately 6.5 ± 15 ns.

MAYBE MOST FAMOUS DAMAGE

- Underground water Cherenkov detector with 50,000 tons of ultrapure water as target material
- Nov 2001: One PMT imploded creating shock wave destroying about 7700 of PMTs

- Detector was partially restored by redistributing the photomultiplier tubes which did not implode.
- Eventually added new reinforced PMTs

during commissioning

LESSONS LEARNED ?

- Spend enough time on simulating all aspects of your detector with ALL materials implemented
- Don't underestimate the "low tech"
 - Cables
 - Cooling
 - Mechanics including FEA
 - Radiation damage of non-sensitive materials
 -

.

- Make sure the overall timeline is not completely crazy (tough job)
- When mixing materials ask a chemist once in a while

Solving and preventing theses kind of problems is also part of the fascination of detector physics!!

