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* How large is the charge induced by fluxes needed to stabilize a given number
of moduli?
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* Can fluxes that stabilize a large number of moduli have O(1) induced charge?

— Common lore: yes

— We argue: no

* Furthermore: we believe there is a relation between the induced charge and
the number of moduli stabilized

The tadPOIG ConJECtu e Bena, Blaback, M.G,, Liist 20

* For a large number N of moduli

Qﬂux s.t.all mod stabilized = g N Wlth a >

at a generic point in mod space

W[+
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My = My X,y CY3
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Dasgupta, Rajesh, Sethi 99
Giddings, Kachru, Polchinski 01

- Minimum at e ?H; = xF; fixes complex structure moduli in terms of M, K

- Fluxes induce D3-charge. In a compact space total charge should be zero
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* Unified description in F-theory
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h2! complex structure moduli
- h3!l complex structure moduli of CY4

D7-brane moduli

3-form fluxes H3, F3 . 4-form flux Ga

2-form fluxes F, on D7

Tadpole cancelation condition

NId N’ ~moduli stabilized by fluxes
— — | G, NG <X 4 :f:—hg’l"'a—l—hl’ — h*" +8)~ =N
Quu= 5 [ GGy <X 20 )~
at minimum all the negative
*Gy = Gy 3-charge for large  p*!
>0 from D7/0O7
Tadpole conjecture
. If true, cannot stabilize
_ 1 il
2 /G4 A G4 all moduli are stabilized > §N d Iarge number of moduli!!
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e Fixing moduli on K3: choosing 3-plane X of self-dual 2-forms

H*(K3,Z)=(—Es)® (—Es) U U U

lattice of signature (3,19)

Q=wi +iwy J ~ wy

* We require smooth compactification (no orbifold singularity)

orbifold singularity if 3

root o € H?*(K3,7Z) such that o 1L %

(@, ) = —2 Y -

#
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G, € HX(K3,Z) x H(K3',7)

 basis of H*(K3,Z) I=1,..,22

~ z”’
G4 = NIJOd[ A C\f/j

22x22 integer
matrix

* Gives a potential for all K3 moduli (except volumes)

* Moduli stabilization can be turned into algebraic problem Braun, Hebecker
Ludeling,Valandro 08

-Define a map A : H?*(K3) — H?*(K3)

. dry = st ar N\ oy

MIJ — NIRdRENMEdMJ
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(i) M is diagonalizable with non-negative eigenvalues

2 2 2 1.2 2
{\ab a27 CLB? bl? AR b19}
. v,

AN

eigenvectors with eigenvectors with
positive norm negative norm
2

(ii) All ¢ £ b (otherwise can rotate the 3-plane 2 = unstabilized moduli)

(iii) No root in the lattice 1. 2

* Goal: find N satisfying all three requirements and minimizing the flux charge

Qux = 1 [ Gy A Gy = Ltr(M)

* Used evolutionary algorithm
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* Optimization inspired by biological evolution (population, mutation,
selection) 99 % 99

v
* Random initial population: P={ N € R*** } (rounded toZ )
* For each N, mutate some entries using other elements of population

* From original and mutated, select the one that minimizes a fitness
function

weights (determined empirically)
; e di ; 2 2 2 12 2
‘‘‘‘ (i) M is diagonalizable {alv as, a3, by, ..., b19}

3 & 2
f =2 wpe(N) + w°Qaux(N) @) a # b
A A
k=1 (i) No root | 2
penalty if (i)-(iii) penalty for large flux
is violated charge

Note: condition (iii) No root in the lattice L 2'is NP hard problem!

* Perform local search (brute force) around minima
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ReS U |tS Bena, Blaback, M.G., Lust 20
e |00,989 matrices with Qqux = 25

e No matrix nux < 24

* Tadpole cancelation condition cannot be satisfied

(K3xK3)
Qﬂux < X 54 — 24

* Cannot stabilize moduli at generic point !

* Tadpole conjecture constant

- min(QHUX) S E ~
~ moduli 57 0.44 >

* This behavior confirmed by looking at smaller dimensional lattices
Bena, Blaback, M.G., Lust 21



lattice A | D=dim(A) | Quin(A)
3U 6 5
Ay U 6 6
D,oU 6 §
Ay ®2U 8 7
Dy, d2U 8 6
Eeg DU 8 9
Ay @ 3U 10 9
Dy,®3U 10 9
Es DU 10 10
Es®2U 12 12
Fs®3U 14 13
2k ®2U 16 14
2By U 18 20
2Es®2U 20 21
2L & 3U 22 20

* Minimum charge = D-|

Bena, Blaback, M.G., List 21
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. . . Braun, Fraiman, M.G., Lust, Parra De Freitas
Analytic supporting evidence on e
K3xK3

* M-theory fluxes leading to “attractive K3” Aspinwall, Kallosh 05
Pic(K3) = HY(K3,R)N H?*(K3,Z) rank 20 Pic(K3)* =Ts rank 2

_ 0. AQ : gives attractive K3 x attractive K3, with
Ga = Re(yh A L2) - with Reyez = complex structure moduli fixed by flux

* List of solutions with flux within/beyond tadpole bound Braun, Kimura, Watari 14

* Require they have an F-theory dual: one of the K3’s elliptically fibered

* Using properties of lattice embeddings we proved: has no roots

no roots in the lattice | ¥ < rank 6 lattice T3 C Ex



AnaIYtiC SuU PPO r‘ti ng evidence on EJZL;r;eFarfiman, M.G,, List, Parra De Freitas
K3xK3



AnaIYtiC Suppor’ting evidence on tB(:aalljz)np,eFar;liman,M.G., List, Parra De Freitas
K3xK3

* Checked all solutions with Qgu.x = 30



. . o Braun, Fraiman, M.G., Lust, Parra De Freitas
Analytic supporting evidence on e
K3xK3

* Checked all solutions with Qgu.x = 30

e All solutions with &1ux < 30 have non-Abelian gauge groups!



. . o Braun, Fraiman, M.G., Lust, Parra De Freitas
Analytic supporting evidence on e
K3xK3

* Checked all solutions with Qgu.x = 30

e All solutions with &1ux < 30 have non-Abelian gauge groups!

* For stabilisation at a generic point in moduli space (no non-Abelian gauge
groups) one needs (Jq.x = 30.



. . o Braun, Fraiman, M.G., Lust, Parra De Freitas
Analytic supporting evidence on e
K3xK3

* Checked all solutions with Qqu < 30 (recall tadpole Qaux <= 24)

e All solutions with &1ux < 30 have non-Abelian gauge groups!

* For stabilisation at a generic point in moduli space (no non-Abelian gauge
groups) one needs (Jq.x = 30.

But this is above tadpole bound



. . o Braun, Fraiman, M.G., Lust, Parra De Freitas
Analytic supporting evidence on e
K3xK3

* Checked all solutions with Qqu < 30 (recall tadpole Qaux <= 24)

e All solutions with &1ux < 30 have non-Abelian gauge groups!

* For stabilisation at a generic point in moduli space (no non-Abelian gauge
groups) one needs (Jq.x = 30.

But this is above tadpole bound

* Stabilisation at a generic points in moduli space cost large Qnux



. . . Braun, Fraiman, M.G., Lust, Parra De Freitas
Analytic supporting evidence on e
K3xK3

* Checked all solutions with Qqu < 30 (recall tadpole Qaux <= 24)

e All solutions with &1ux < 30 have non-Abelian gauge groups!

* For stabilisation at a generic point in moduli space (no non-Abelian gauge
groups) one needs (Jq.x = 30.

But this is above tadpole bound

* Stabilisation at a generic points in moduli space cost large Qnux

* One could think of this as a positive result, but non-Abelian gauge groups
come with extra moduli (brane moduli) that need to be stabilised
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Analytic supporting evidence: D7 moduli stabilization

- F-theory on CY 4-fold fibered over a base B3 in Sen limit

e D/-brane moduli nn = 58/ c1(Bs3)? + 16
Bs

Free
\\111()(1111115

B Sta’bilized by F2 o ‘‘‘‘‘

 ——_—

Tune and turn on

D7-brane worldvolume flux
] o along C'
Tadpole cancelation condition
1 . 15
Qavk == [ F5AF, < 15 | e(B3)’ +12 ~ _nr ~0.26n7  for large ny
2 /4 5. 583
negative

3-charge from D7/O7
Tadpole conjecture
1 If true, cannot stabilize
- 1 :
> /SF AV I L a large number of moduli

are stabilized
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* We verified tadpole conjecture for any Weak Fano base !

* Moduli stabilized by flux ' <+ C' complex curve

v

< 7
Nstab.moduli < 8d + 1 QﬂuX > id +1—g
1

(m — 58/61(33)3 + 16)

llowed by tadpol
* For large n-, and fixed genus, we recover a > 1—76 ~ (.44 > (.26 07 Y AIReE

cancelation condition

> % Tadpole conjecture

* Moduli cannot be stabilized within tadpole, Tadpole conjecture satisfied

* This reduces to the result for B;= CP?, genus 0 Collinucci, Denef, Esole 08

Nstab.moduli = 32d + 1 Qaux > 14d + 1 ‘Qneg‘ = 972 84 Z % ~ (.44
— 3798 > 1640
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* Asymptotic limits of moduli space (here complex structure)

t'=¢' +1is i=1,...,n < p!

> 1
® S1,32"'Sn9°°

Moduli Space
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Approaching a boundary b gris

N 2 .
1 2 n 1 e s i
S ,S ce o >> >}/, >}/, cooy >}/, S >}/
drop exponential . >
corrections to e.g. Kahler drop P°'>’f‘°m'al 4 1
potential corrections -
y ~ T

gives good
approximation
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Asymptotic Hodge theory =g +is

o Shift symmetry ¢’ — ¢' + 1

Si=>

period vector H[:/ (24
ar

[t + 1) = T.II(¢)

monodromy matrices

e Allows to extract behavior of

period vector and Hodge star in t Moduli Space

I1(¢) = !N <a0 + a,.cz’mi + )
T. = e

l

e n commuting sl(2) triplets: { N7, Nl.+, Nl.O}

Hi (Y.R)=@V,| ¢=(¢,....2,)

vaz(bﬂi_fi_l)vf vy € Vy For a 4-fold -4 <7, <4
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Moduli stabilisation

G4:*G4

A 4 £,
gl I 2 2 g1 ! N
o X Vf= — — (S ) *Oovl *oo:Vf — V_f
52 53 s |
indep of st

* Expand in the V, subspaces: G, = Z G,
4

j
N
I
)
N

* The equations along different V, subspaces decouple:

* We showed that all but one representation have 0<7; <2 Vi (recall —4<¢;,<4)

* Not hard to see that one (pair of ) (&, flux stabilises one modulus
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Qs = (G, Ga) = 3 (G, Go)

l



Tadpole

1 \y 1 & . . .
Qfux = §<G4, Gy) = Z<G+£’ G_y) = Z (8_) . (S”)gn 1G o2 note: each individual

term is positive!



Tadpole

term is positive!

1 \y 1 & . . .
Qfux = §<G4, Gy) = Z<G+£’ G_y) = Z (8_) . (S”)gn 1G o2 note: each individual




Tadpole

1 \y 1 & . . .
Qfux = §<G4, Gy) = Z<G+g, G_y) = Z (S_) . (Sn)gn 1G o2 note: each individual

term is positive!

* Since one (G, flux stabilises one modulus, the tadpole grows linearly with the
number of moduli!



Tadpole

1 \y 1 & . . .
Qfux = §<G4, Gy) = Z<G+g, G_y) = Z (S_) . (Sn)gn 1G o2 note: each individual

term is positive!

* Since one (G, flux stabilises one modulus, the tadpole grows linearly with the
number of moduli!

* Since all but one representation have 0 <# <2

Qfux = Z YMGellZ as many terms as moduli
14



Tadpole

1 \y 1 & . . .
Qfux = §<G4, Gy) = Z<G+g, G_y) = Z (S_) . (Sn)gn 1G o2 note: each individual

term is positive!

* Since one (G, flux stabilises one modulus, the tadpole grows linearly with the
number of moduli!

* Since all but one representation have 0 <# <2

Qftux > Z VHGeHio as many terms as moduli HGEHio quantised in Q
¢



Tadpole

1 \y 1 & . . .
Qfux = §<G4, Gy) = Z<G+g, G_y) = Z (S_) . (Sn)gn 1G o2 note: each individual

term is positive!

* Since one (G, flux stabilises one modulus, the tadpole grows linearly with the
number of moduli!

* Since all but one representation have 0 <# <2

|Gy||2.  quantised in @

Qfux = Z YMGellZ as many terms as moduli 1
14

2
“experimental” evidence ZHGEHOO > 3
>0



Tadpole

1 \y 1 & . . .
Qfux = §<G4, Gy) = Z<G+g, G_y) = Z (S_) . (Sn)gn 1G o2 note: each individual

term is positive!

* Since one (G, flux stabilises one modulus, the tadpole grows linearly with the
number of moduli!

* Since all but one representation have 0 <# <2

|Gy||2.  quantised in @

1

2
“experimental” evidence ZHGEHOO > 3
>0

Qfux = Z YMGellZ as many terms as moduli
14

14 2> /. gives good approximation



Tadpole

1 \y 1 & . . .
Qfux = §<G4, Gy) = Z<G+g, G_y) = Z (S_) . (Sn)gn 1G o2 note: each individual

term is positive!

* Since one (G, flux stabilises one modulus, the tadpole grows linearly with the
number of moduli!

* Since all but one representation have 0 <# <2

|Gy||2.  quantised in @

1

2
“experimental” evidence ZHGEHOO > 3
>0

Qfux = Z YMGellZ as many terms as moduli
14

1
Qfux > 9 n 4 Z 4 gives good approximation
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Implications for de Sitter with anti-brane uplift e ows o, s

Moduli stabilization using warped effective field theory

for conifold modulus Douglas, Torroba 08 K
Vv In unwarped
| effective theory ds® = QZAdsi + e_QAdséY

S

* Add wants to collapse the S3!
Viotal

Full flux + D3 Jormes
warped
potential Joam=7

for size of S3

gs M =12

S

Need /g;M > 6.7 to avoid collapse
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* But then hierarchy: s K

A 20 KM _ 2 Rflux _
eA’bottom — Aﬂ: eXp (_ 3 q M2) > € 37 (6°7)2 ™ O(]‘O 2)
Uv §

needs  QEM* > (O(100)

Aux

* Requires a large tadpole charge = large number of moduli

* Large number of moduli need to be stabilized with extra fluxes

* Cannot be done if tadpole conjecture is true

* No anti-brane uplift, no dS vacua a la KKLT
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Conclusions

* Tadpole conjecture: for large number N of moduli

QHUX s.t. all mod stabilized > ¢y N x >

at generic pt in mod. space

Wl

* Conjecture supported by several examples

- previous constructions in the literature
- evolutionary algorithm for K3xK3

- scan of flux solutions leading to attr K3 x attr K3
- analytic computation for D7-moduli
- analytic computation in asymptotic limits in moduli space

* If true, cannot stabilize a large number of moduli in F-theory (or in lIB limit)

| 0272000 yacua not phenomenologically relevant
* If true, no anti-brane uplift in long warped throats, no dS vacua a la KKLT

* Forced to work with CY manifolds with few moduli (or other geometries)



