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Introduction perturbative QFT

Z [J] =

∫
Dφ exp

[
i

~

∫
dDx(L+ Jφ)

]
.

E.g. with L =
∫
dDx

[
1
2 (∂uφ)2 − 1

2m
2φ2 − 1

4!λφ
4
]
.

All physical correlators are of the form

〈φ(x1)..φ(xn)〉=Z [J]−1

(
δ

δJ(x1)

)
..

(
δ

δJ(xn)

)
Z [J]

∣∣∣∣
J=0

In interacting theories λ 6= 0 this is expanded asymptotically in

Feynman graphs
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Introduction perturbative QFT

Realistic theories: Probability for e− e+ to annihilate to two

photons P(e−e+ → γγ)∼|A(e−e+ → γγ)|2, α∼ 1
137

Scalar part e.g. for e.g. the box integral I : Propagators 1
q2−m2+i ·0

D = D0 − 2ε, I =
∑∞

k=−n Ikε
n with Ik functions of masses and

Lorentz invariant products of the external momenta that we need

to know!
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Emerging relation Feyman Integrals and Periods

Feynman integrals⇔ Periods of algebraic varities

Planar Feynman graph Max. Cut Integrals Period - Geometry

1-loop rational functions Pts in Fano 1-fold

2-loop elliptic functions families of elliptic curve

3-loop fullfil 3 ord. hom diff eqs. families of K3

4-loop fullfil 4 ord. hom diff eqs. families of CY-3-fold
...

...
...

The full Feynman integral has boundaries: Periods integrals are

replaced by chain integrals; hom. diff. eqs. are replaced by inhom.

diff. eqs. I. Gel’fand, S. Bloch, P. Vanhove, M.Kerr, C. Duran, S. Weinzierl, F. Brown, O. Schnetz, J.

Bourjaily, A. Mc Leod, M. Hippel, M. Wilhelm, J. Broedel, L Trancredi, S. Müller-Stach, . . . + 248 cits. in [3]
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Kodaira map of algebraic varieties

c1 = 0

c1 < 0

c1 > 0

d = 1

d = 2

d = 3

...
...

general type (terrible), ∞ ∀d

Fano (simple), finite d fix CY (beautiful), finite ? d fix

l = 0

g = 0

l = 1

g = 1

l = 2

g = 2

l = 3

g = 3

. . .

. . .

P1 T 2 Σ2 Σ3

. . .l = 2

l = 3

l = 4

...
...

T 2

K3

CY 3-fold
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Detailed dictionary

l = (n + 1)-loop banana Calabi-Yau (CY) geometry

integrals in D = 2 dimensions

1 Maximal cut integrals (n, 0)-form periods of CY

in D = 2 dimensions manifolds or CY motives

2 Dimensionless ratios zi = mi
2/p2 Unobstructed compl. moduli of Mn, or

equi’ly Kähler moduli of the mirror Wn

3 Integration-by-parts (IBP) reduction Griffiths reduction method

4 Integrand-basis for maximal cuts of Middle (hyper) cohomology Hn(Mn)

of master integrals in D = 2 Mn

5 Complete set of differential Homogeneous Picard-Fuchs

operators annihilating a given differential ideal (PFI) /

maximal cut in D = 2 dimensions Gauss-Manin (GM) connection
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Relative Calabi-Yau periods via Symanzik representation

In the Feynman representation the contribution of an l-loop graph

yields an integral with a rational integrand defined by the graph

polynomials U(x) and F(x , p,m), p independent momenta, m

masses

Iσn−1(p,m) =

∫
σn−1

∏
i

xνi−1
i

Uω−
D
2

Fω
µn−1

D space time dimn # of edges, νi their multiplicity

ω =
∑n

i=1 νi − lD/2, l # of loops

µn−1 measure on Pn−1

σn−1 ={[x1 : . . . : xn ] ∈ Pn−1|xi ∈ R≥0 ∀ 1 ≤ i ≤ n} an open domain.

D = D0 − 2ε, I =
∑∞

k=−n Ikε
n with Ik functions of masses and

Lorentz invariant products of the external momenta.
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Feyman graphs and (relative) Calabi-Yau periods

A very simple series of such Feynman integrals with loop order l

are the banana diagrams in critical dimension D0 = 2:

p2 p2

m1

m2

m3

ml+1

This graph leads in t = p2

µ2 , ξi = mi
µ (zi =

m2
i

p2 ) to period integrals

Iσl =

∫
σl

µl

F(t, ξi ; x)
=

∫
σl

µl(
t −

(∑l+1
i=1 ξ

2
i xi

)(∑l+1
i=1 x

−1
i

))∏l+1
i=1 xi

The Newton polytopes of F is reflexive, hence F = 0 defines a

Calabi-Yau manifold. For example for l = 2, 3 they look like

um1

m2

m3
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Maximals cut integrals

By closing the chain σl to a T l cycle one gets a maximal cut
integral in D0 = 2

IT l−1 (z ; 0) =

∫
T l

µl

F(1, z)
=

∫
T l−1

∮
S1

µl

F(1, z)
= 2πi

∫
ΓT =T l−1

Ωl−1(z) .

Here cycle T l is defined as

T l := {[x1 : . . . : xl+1] ∈ Pl | |xi | = 1 for all 1 ≤ i ≤ l + 1} .

The last identification relies on the Griffiths residue form for the

holomorphic n-form Ω for complete intersections

Ω(z) =
1

(2πi)r

∮
S1

1

. . .

∮
S1
r

∧mi=1µni
P1 · · ·Pr

,

where S1
k encircles the constraints Pk = 0 in the ambient space.

The crucial point is that the integral over the S1 cycle of T l leads

to a closed period integral of Ωl−1 over T l−1 on a CY family Ml−1

MHS
l−1 = {x ∈ Pl |F(1, z ; x) = 0} . 9



Maximals cut integrals

Performing all l residua integrals one gets with |k | =
∑l+1

i=1 ki

IT l−1(z ; 0) = (2πi)l
∞∑
n=0

∑
|k|=n

(
n

k1 . . . kl+1

)2 l+1∏
i=1

zkii .

• The periods IΓ with Γ ∈ H l−1(Ml−1,Z) fulfill the homogenous

Picard Fuchs equations of Ml−1.

• The Feynman integrals is a chain integral. It fulfils an

associated inhomogeous extension of the latter.

• The hypersurface MHS
l−1 defines a singular family of Calabi-Yau

motives with l + 1 complex parameters. To get a workable

smooth model one could deform F (1, z ; x) (toric resolution).

However, one needs l2 (complex) moduli to achieve that. This

leads to a highly redundant model that is very hard to solve.

We provide a better CY motive latter.
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A better motive for the Banana integral

Consider the complete intersection of two polynomials of degree

(1, . . . , 1) in the cartesian product of (P1)′s

Pl+1 := ⊗l+1
i=1P1

(i) .

Such a complete intersection manifold in a product of manifolds is

denoted in short as

MCI
l−1 =


P1

(1)
...

P1
(l+1)

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

1 1

...
...

1 1

 ⊂


P1

(1)
...

P1
(l+1)

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

1

...

1

 =: Fl ⊂ Pl+1 .

11



A better motive for the Banana integral

P1 =a0 w
(1)
0 +

l+1∑
m=1

a2m−1 w
(1)
m = a0

l+1∏
k=1

x
(k)
1 +

l+1∑
m=1

a2m−1 x
(m)
2

l+1∏
k 6=m

x
(k)
1 ,

P2 =ã0 w
(2)
0 +

l+1∑
m=1

a2m w
(2)
m = ã0

l+1∏
k=1

x
(k)
2 +

l+1∑
m=1

a2m x
(m)
1

l+1∏
k 6=m

x
(k)
2 .

On these parameters the (C∗)l+1-scaling symmetries given in [?]

`(1) = (−1,−1; 1, 1, 0, 0, · · · , 0, 0, 0, 0)

`(2) = (−1,−1; 0, 0, 1, 1, · · · , 0, 0, 0, 0)
...

`(l) = (−1,−1; 0, 0, 0, 0, · · · , 1, 1, 0, 0)

`(l+1) = (−1,−1; 0, 0, 0, 0, · · · , 0, 0, 1, 1)

act and yield the (l + 1) second order GKZ operators in the Batyrev

large radius coordinates zk =
∏2(l+2)

i=1 a
`

(k)
i
i /(a0ã0), k = 1, . . . , l + 1. 12



A better motive for the Banana integral

To compare with hypersurface representation tset

a0 = h, ã0 = 1

a2k−1 = zk , a2k = h, k = 1, . . . , l + 1 (1)

and construct a birational map from the complete intersection

geometry to the hypersurface geometry. Solving for P1 = 0 one

gets h = −
∑l+1

k=1
m2

k
p2 Wk , while P2 becomes

P2 = 1 + h
∑l+1

k=1 1/Wk . Here we passed to toric C∗-coordinates

Wk = x
(k)
1 /x

(k)
2 for k = 1, . . . , l + 1 and arrive at

P2 = p2 −

(
l+1∑
i=1

m2
i Wi

)(
l+1∑
i=1

1

Wi

)
= F .
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Periods on Calabi-Yau n-folds

Periods are integrals

Πij(z) =

∫
λi

Λj(z)

that define a pairing between between homology and cohomology

(n odd) well defined by the theorem of Stokes:

Pi : Hn(Mn,Z)× Hn(Mn,C)→ C .

Chose a symplectic basis

{AI ,BJ} = λ, AI ∩ BI = δIJ
rest zero

Chose a symplectic basis

{αI , β
J} = Λ,

∫
M αI ∧ βJ = δJI

rest zero

λ is topol. and so is Λ via
∫
AI αJ =

∫
BJ
βI = δIJ . A ba-

sis moving with the comp. str. in Λ are the meromorphic forms

Ω(z), ∂zΩ(z), . . ..<

A <

B

Calabi-Yau 1-fold p3 = wy2−4x3−g2(z)xw2−g3(z)w3 = 0 ⊂ P2

Ω(z) =
∮

2dx∧dy
p3

= dx
y , ∂zΩ(z) ∼ xdx

y

E1(z) =
∮
A

Ω, E2(z) =
∮
B

Ω Elliptic integrals.

Well studied in part because they solve Keplers problem

Fullfill linear diff eq. of 2cd order. Picard(1891)-Fuchs(1881) eq.
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Periods on 3-folds

Consider the mirror quintic W

p̂5 =
4∑

i=0

x5
k − 5z−

1
5

4∏
k=0

zi = 0 ⊂ P̂4

1

1 1

1

−→

1

0 0

0 101 0

1 1 1 1

0 101 0

0 0

1

Hodge diamond of

elliptic curve
Hodge diamond of W

The period vector Π(z) =
(∫

A0 Ω,
∫
A1 Ω(z),

∫
B0 Ω(z),

∫
B1 Ω(z)

)T
fullfils a 4th order Picard-Fuchs diff. eq. (θ = zd/dz)

[θ4 − 5z(5θ + 1)(5θ + 2)(5θ + 3)(5θ + 4)]Π(z) = 0
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Periods on 3-folds

Local → global: How to find the periods over cycles in H3(W ,Z) ?

Find the basis in which mondromies Π 7→ M∗Π around the singular

points ∗ are in Sp(4,Z)

P



0 5−5 ∞ ∗
0 0 1

5

0 1 2
5 z

0 2 3
5

0 1 4
5


z=5

−51/z=0 z=0
PI

complex moduli space

1

Ginzburg/Gepner−
point

Orbifold/Landau− Conifold point Large volume

point

Family of Quintics 

Identifies also

the expansion

point for the

mirror map as

point of maxi-

mal unipotent

monodromy

16
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Periods on 3-folds

Special geometry Bryant and Griffiths ’83 implies that the periods

can be expressed by a prepotential F


∫
B0

Ω∫
B1

Ω∫
A0

Ω∫
A1

Ω

 =


F0

F1

X 0

X 1

 = X 0


2F0 − t∂tF0

∂tF0

1

t



triple logarithmic solution

double logarithmic solution

analytic solution

logarithmic solution

and Candelas et al ’91 identified near the MUM point z = 0

F(z) ≡ F0(t(z)), t =
X 1

X 0
= log(z) +O(z)

Hosono et. al ’93 generalised to multiparameter CY and related

the classical terms to the CTC Wall data κ = D3, σ = (κ mod 2)/2 in

F = −κ
6
t3+

σ

2
t2+

c2 · D
24

t+
χ(M)

2

ζ(3)

(2πi)3
− 1

(2πi)3

∑
β∈H2(M,Z)

β 6=0

nβ0Li3(Qβ).
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The mirror picture for the Banana geometry and the Γ̂-class

The vertical quantum cohomology of W CI
l−1 relates natural to the

banana graph

p2 p2

m1

m2

m3

ml+1

←→W CI
l−1 =


P1

1

...

P1
l+1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

1 1
...

...

1 1

 ⊂


P1
1

...

P1
l+1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

1
...

1

 = Fl .

In particular, in the high energy regime we get a one-to-one identification of

the complexified (large volume) Kähler parameters tk of the l + 1 rational

curves P1
k with the physical parameters m2

i /p
2

tk ' 1

2πi

∫
P1
k

(iω − b) +O(e−tk ) =
log

2πi

(
m2

k

p2

)
=

log(zk)

2πi

for k = 1, . . . , l + 1. 18



The mirror picture for the Banana geometry and the Γ̂-class

A powerful application of the geometric realization W CI
l−1 is the

Γ̂-class formalism. It relates the Frobenius Q-basis of solutions at

the point of maximal unipotent monodromy (MUM) to an integral

Z-basis of solutions to the PFI.

Let Ip an index set of order |Ip| = p and define the Frobenius basis
at the MUM point:

S(p),k(z) =
1

(2πi)pp!

∑
Ip

κ
i1,...,ip
(p),k $0(z) log(zi1 ) · · · log(zip ) +O(z1+α) .

Here |S(p)(z)| denotes the total number of solutions which are of leading order

p in log(zi ) and κ
i1,...,ip
(p),k are intersection numbers of the mirror W CI

l−1.

19



The mirror picture for the Banana and the Γ̂-class

In particular, the Kähler parameters tk are given by the mirror map

tk(z) =
S(1),k(z)

S(0),0(z)
=

1

2πi

(
log(zk) +

Σk(z)

$0(z)

)
,

for k = 1, . . . , h11(Wn) = hn−1,1(Mn). Homological mirror

symmetry predicts then the relevant maximal cut integral

(S := S l−1) ∩ (T := T l−1) = 1

ΠS(t(z)) =

∫
Wl−1

eω·t Γ̂(TWl−1) +O(e−t) (2)

20



The mirror picture for the Banana geometry and the Γ̂-class

An extension also yields the full Feynman integral

Jl ,0(z , 0) =

∫
Fl

eω·t Γ̂Fl
(TFl) +O(e−t) . (3)

Here the extended Γ̂-class is given by

Γ̂F (TF ) =
Â(TF )

Γ̂2(TF )
=

Γ(1− c1)

Γ(1 + c1)
cos(πc1) .

By comparing the powers of tk ∼ log(zk) on both sides of (2),(3)

using the mirror map these formulas determine uniquely the exact

boundary conditions for the integrals in terms of topological

intersection calculations on W CI
l−1 or the Fano variety Fl and the

Frobenius basis for the banana graph [2].

21



The mirror picture for the Banana and the Γ̂-class

Let us give an example for Il ,1(p,m,D = 2) up to five loops

l S(0),1 S(1),1 S(2),1 S(3),1 S(4),1

1 −2πi

2 18ζ(2) 6πi

3 −16ζ(3) + 24iπζ(2) −72ζ(2) −12πi

4 −450ζ(4)− 80iπζ(3) 80ζ(3)− 120πiζ(2) 180ζ(2) 20πi

5
−288ζ(5) + 1440ζ(2)ζ(3)−

540iπζ(4)

2700ζ(4)+

480iπζ(3)

−240ζ(3)+

360πiζ(2)
−360ζ(2) −30πi

22



The analytic structure of the Banana integral and results

Roadmap to the physical moduli space:

s = 1/t ∈Mcs(Ml−1) = P1 \
(⋃b l+1

2
c

j=0

{
1

(l+1−2j)2

}
∪ {0}

)

s = 0

MUM pt.

s = 1
(l+1)2

conifold

s = 1
(l−1)2

conifold

· · ·
s = 1

pure Torsion

conifold

s = 33 + 8
√

17

s =∞

Bessel pt.

rBI

23



Analytic Results
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The banana integrals J
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Master Integrals and integration by parts relations

Consider l-loop Feynman integrals in general dimensions D ∈ R+

of the form

Iν(x ,D) :=

∫ l∏
r=1

dDkr

iπ
D
2

p∏
j=1

1

D
νj
j

(4)

Dj = q2
j −m2

j + i · 0 for j = 1, . . . , p are the propagators, qj is the

j th momenta through Dj , m
2
j ∈ R+ are masses, i · 0 indicates the

choice of contour/branchcut in C. Subject to momentum

conservation the qj are linear in the external momenta p1, . . . , pE ,∑E
i=j pj = 0 and the loop momenta kr . We defined ε := D0−D

2 .
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Master Integrals and integration by parts relations

The Feynman integral depends besides D on dot products of pi

and the masses m2
j , written compactly in a vector

x = (x1, . . . ,N) = (pi1 · pi2 ,m2
j ) and dimensional analysis of Iν

shows that it depends only on the ratios of two parameters xi , we

chose

zk :=
xk
xN

for 1 ≤ k < N

and label now the parameters of the integrals Iν by the

dimensionless parameters z .
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Master Integrals and integration by parts relations

The propagator exponents and D ∈ Z span a lattice

(ν,D) ∈ Zp+1. The Iν(x ,D) are called master integrals.

The integration by parts (IBP) identities

∫ l∏
r=1

dDkr

iπ
D
2

∂

∂kµk

qµl

p∏
j=1

1

D
νj
j

 = 0 .

relate the master integrals with different exponents ν.

There is a finite region in the lattice that contains all

non-vanishing master integrals. In a basis of master integrals one

can express derivatives w.r.t. the zk as a linear combination

rational coefficients by the IBP relations.
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Master Integrals and integration by parts relations

• The basis of master integrals (graph cohomology) corresponds

to the basis of the cohomology H l−1(Ml ,Z).

• The integration by parts relations correspond to the Griffith

reduction formula.

• A complete set of IBP relations corresponds to the complete

Picard Fuchs ideal of Gauss-Manin connection for the period

integrals

.

Among the elements in the lattice Zp and, in particular, for the master integrals

one can define sectors and a semi-ordering on the latter by defining a map

ν 7→ ϑ(ν) =: (θ(νj))1≤j≤p .

where θ is the Heaviside step function. The semi-ordering is then defined by

ϑ(ν) ≤ ϑ(ν̃), iff θ(νj) ≤ θ(ν̃j), ∀j . This defines an inclusive order on subgraphs

with less propagators and therefore simpler topology.
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Detailed dictionary continued

6 Contributions from subtopologies Inhomogeneous extensions of the PFI

to the differential equations or the GM connection

7 (Non-)maximal cut contours (Relative) homology of CY

geometry Hn(Mn) (Hn+1(Fn+1, ∂σn+1))

8 Full banana integrals Chain integrals in CY geometry or

in D = 2 dimensions extensions of Calabi-Yau motive

9 Degenerate kinematics Critical divisors

(e.g., m2
i = 0 or p2/m2

i → 0) of the moduli space

10 Large-momentum regime Point of maximal unipotent

p2 � m2
i monodromy & Γ̂-classes of Wn

11 General logarithmic degenerations Limiting mixed Hodge structure

from monodromy weight filtration
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The banana integrals as example for extensions

The banana graph has 2l+1 − 1 master integrals in l + 2 sectors:
l + 1 sectors correspond to ϑ(ν) = (1, . . . , 1, 0, 1 . . . 1). These
sectors correspond all to l-loop tadpole integrals

Jl,i (z ; ε)=
(−1)l+1(p2)lεεl

Γ(1 + lε)
I1..1,0,1..1(x ;D)=−Γ(1 + ε)l

Γ(1 + lε)

l+1∏
j=1
j 6=i

z−εj .

These lower sectors are all tadpoles yielding already analytic

expressions.
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The banana integrals as example for extensions

Further 2l+1 − l − 2 master integrals come from the sector

ϑ(ν) = (1, . . . , 1), k ∈ {0, 1}l+1, 1 ≤ |k | ≤ l − 1,

Jl ,0(z ; ε) =
(−1)l+1

Γ(1 + lε)
(p2)1+lε I1,...,1(x ; 2− 2ε) ,

Jl ,k(z ; ε) = (1 + 2ε) · · · (1 + |k |ε)∂kz Jl ,0(z ; ε) .

Here |k| =
∑l+1

j=1 kj and ∂
k
z :=

∏l+1
i=1 ∂

ki
zi

.

The latter correspond in the critical dimension, the leading order in

ε→ 0 the period integrals of families of Calabi-Yau

(n = l − 1)-folds.
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The banana integrals as example for extensions

Banana integrals do occur in the iterative procedure within each

more complicated Feynman diagram.
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Detailed dictionary continued

12 Analytic structure and Monodromy of the CY motive

analytic continuation and its extension

13 Quadratic relations among Quadratic relations from

maximal cut integrals Griffiths transversality

14 Special values of the integrals Reducibility of Galois action

for special values of the zi & L-function values

15 (Generalized?) modularity of Global O(Σ,Z)-monodromy, integrality

Feynman integrals of mirror map & instantons expansion
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Net diagrams

Momentum space

Position space

a0

a1 a2

a3

a4a5

l = 2, d = 2

I1,2 =

∫
d2x1d

2x2

|x1 − a0||x1 − a1||x1 − a2||x1 − x2||x2 − a3||x2 − a4||x2 − a5|
=

∫
d2xdx̄2√
P(z)P̄(z̄)
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Net diagrams

Consider more generally in the momentum space of a QFT with a

four vertex interaction an l-loop multibox graph Γ̂m,n made of m

rows and n columns of boxes together with its dual dual graph

Γn,m in the positions space

Momentum space

Position space

a0

a1 a2 a3

a4

a5

a6a7a8

a9

x1 x2 x3

x4 x5 x6

Figure 1: The 6-loop net graph Γ̂2,3 in the momentum space (blue) and

the dual graph Γ2,3 in position space (red) a 2n + 2m correlator.
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Net diagrams

Note associate to each a coordinate xi , i = 1, . . . , l that has to be

integrated over, while the ai are external coordinates.

The

propagators in the position space are

Pij = 1/((xi − xj)
2 + m2

i )λ, Piα = 1/((xi − aα)2 + m2
i )λ, (5)

where mi is the propagator mass and λ is a propagator weight and

we distinguished for latter use outer inner and outer propagators.

For D = 2, λ = 1/2 and in this case one complex coordinates and

write x2 = xx̄ so that the propagators become

Pij = 1/|xi − xj |, Piα = 1/|xi − aα| .

The Feynman integral for a (m, n) net becomes a real quantity

|dµ|2 = ∧li=1dxi ∧ dx̄ı̄

In,m =

∫ (∏
int

edges

Pij

∏
ext

edges

Piα

)
|dµ|2,
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Net diagrams

In D = 2 we can use the conformal symmetry PSL(2,C) to set 3 aI

to 0, 1,∞. We label the remaining r = 2m + 2n− 3 cross ratios by

zi , . . . , zr . A particular simple one parameter sub slice of the

position space by the fishnet graphs

0 z

1

∞

x1 x2 x3

x4 x5 x6
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Net diagrams

Claim 1: To each graph Γmn we can associate a Calabi-Yau variety

W (m,n) whose periods determine Im,n.

Indeed, let l = mn and P−2
ij = (xi − xj) and P−2

iα = (xi − aα)

inverses of a holomorphic version of the propagators. The l-fold

W (m,n) is defined as the double covering of B = (P1)l branched at

y2 =
∏
int

edges

P−2
ij

∏
ext

edges

P−2
iα =: P(x , u) .

x1

x2

a0

a1

a5

a2 a3 a4
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Net diagrams

Claim 2: Each W (m,n) gives rise to a Calabi-Yau motive with

integer symmetry (l even) or antisymmetric (l odd) intersection

form Σ, a point of maximal unipotent monodromy and a period

vector Π(z) =
∫

Γi
Ω with Γi ∈ Hl(W

(m,n),Z).

The Feynman

amplitude is given near the Mum points by the quantum volume of

the mirror

Im,n = i l
2
Π†ΣΠ = e−K(z,z̄) = Volq(M(m,n))

and globally by analytic continuation of the periods. Here M(m,n)

is the mirror of W (m,n).
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Net diagrams

Claim 3: There exist an integrable conformal fishnet theories

(CFNT) developed first (Gürdogan, Kazakov 2015) as deformation

of N = 4 SU(Nc) SYM theory. Let X ,Z be SU(Nc) matrix fields

then the Lagrangian is

LFN = Nctr
(
−∂µX∂muX̄ − ∂µZ∂muZ̄ + ξ2XZX̄ Z̄

)
Each Im,n integral is an amplitude in the CFNT, i.e. Im,n(z) has to

be single valued i.e. a Bloch Wigner dilogarithm or in the D = 2

case e−K .

The factorisation of the amplitudes of the integrable system

subject to the Yang-Baxter relations imply many non-trivial

relations for he periods of the W (m,n). E.g. we the one parameter

specialisation the periods of W (n,m) are (m ×m) minors of the

periods

W
(1,m+m)
l etc.
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Net diagrams

Claim 4: The conformal Yangian generated by the algebra

Pµj = −i∂µaj , Kµ
j = −2iaµj (aνj ∂aj ,ν + ∆j) + ia2

j ∂
µ
aj

Lµνj = i(aµj ∂
ν
aj
− aνj ∂

µ
aj ), Dj = −i(aµj ∂aj ,µ),

in differentials w.r.t. to the external position, generates together

with the permutation symmetries of the latter a differential ideal

that annihilates the Im,n(z) and is equivalent to the Picard-Fuchs

differential ideal that describes the variation of the Hodge

structure in the middle cohomology of M
(m,n)
z and annihilated the

periods of Ω.
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